cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286889 Sequence generated by the reciprocal of the generating function for A051424.

Original entry on oeis.org

1, -1, -1, 0, 1, 0, 1, -1, 0, 0, 1, -3, 2, 0, 3, -1, -2, -10, 8, 5, 8, -6, -3, -24, 17, 8, 12, -15, 19, -37, 18, -29, 18, 3, 109, -72, -28, -153, 46, 72, 335, -165, -86, -346, 84, -34, 650, -224, 245, -492, -69, -1054, 966, 161
Offset: 0

Views

Author

Maxie D. Schmidt, Aug 04 2017

Keywords

Comments

Inverts A051424 by discrete convolution: Sum_{k=0..n} rpp(k) rpp2(n-k) = delta_{n,0}. This is easy enough to see by the generating function definition of the sequence.

Crossrefs

Cf. A051424.

Programs

  • Mathematica
    (* For all the terms of the sequence A051424 listed in the database, the partial generating function for the sequence is given by:
      rpp2[n_] :=
      SeriesCoefficient[1/(1 + q + 2 q^2 + 3 q^3 + 4 q^4 + 6 q^5 + 7 q^6 + 10 q^7 +
         12 q^8 + 15 q^9 + 18 q^10 + 23 q^11 + 27 q^12 + 33 q^13 +
         38 q^14 + 43 q^15 + 51 q^16 + 60 q^17 + 70 q^18 + 81 q^19 +
         92 q^20 + 102 q^21 + 116 q^22 + 134 q^23 + 153 q^24 + 171 q^25 +
         191 q^26 + 211 q^27 + 236 q^28 + 266 q^29 + 301 q^30 +
         335 q^31 + 367 q^32 + 399 q^33 + 442 q^34 + 485 q^35 +
         542 q^36 + 598 q^37 + 649 q^38 + 704 q^39 + 771 q^40 +
         849 q^41 + 936 q^42 + 1023 q^43 + 1103 q^44 + 1185 q^45 +
         1282 q^46 + 1407 q^47 + 1535 q^48 + 1662 q^49 + 1790 q^50 +
         1917 q^51 + 2063 q^52 + 2245 q^53 + 2436 q^54), {q, 0, n}]
      Table[rpp2[n], {n, 0, 53}] *)
    (* This generating function was created from the original sequence data by the following code: *)
      StringSplit["1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 23, 27, 33, 38, 43, 51, 60, 70, 81, 92, 102, 116, 134, 153, 171, 191, 211, 236, 266, 301, 335, 367, 399, 442,     485, 542, 598, 649, 704, 771, 849, 936, 1023, 1103, 1185, 1282, 1407, 1535, 1662, 1790, 1917, 2063, 2245, 2436", ", "]
      MapIndexed[ToExpression[(#1)] Power[q, First[#2] - 1] &, %]
      Apply[Plus, %]
      TeXForm@PolynomialForm[%, TraditionalOrder -> False]

Formula

Letting rpp(n) := A051424(n), and this sequence equal rpp2(n), we have the following two formulas for Euler's totient function:
phi(n) = Sum_{j=1..n} Sum_{k=1..j-1} Sum_{i=0..j-1-k} rpp_2(n-j) rpp(j-1-k-i) Iverson{(i+k+1, k)=1};
phi(n) = Sum_{d:(d,n)=1} (Sum_{k=1..d+1} Sum_{i=1..d} Sum_{j=2..k} rpp(k-j) rpp_2(i+1-k) mu_{d,i} phi(j)).
I prove that these expressions are correct in an article I have written which motivated the need for this sequence. A proof is available upon reasonable email request.