A290529 Inverse of the factorization matrix in the Lambert series factorization theorem.
1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 5, 3, 2, 2, 1, 1, 10, 7, 5, 3, 2, 1, 1, 12, 9, 6, 4, 3, 2, 1, 1, 20, 14, 10, 7, 5, 3, 2, 1, 1, 25, 18, 13, 10, 6, 5, 3, 2, 1, 1, 41, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1, 47, 36, 26, 19, 14, 10, 7, 5, 3, 2, 1, 1
Offset: 1
Examples
Triangle begins: 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 5, 3, 2, 2, 1, 1, 10, 7, 5, 3, 2, 1, 1, ...
Links
- M. Merca, The Lambert series factorization theorem, Ramanujan J. (2017).
- M. Merca and M. D. Schmidt, Generating special arithmetic functions by Lambert series factorizations, arXiv:1706.00393 [math.NT], 2017.
- M. D. Schmidt, New recurrence relations and matrix equations for arithmetic functions generated by Lambert series, arXiv:1701.06257 [math.NT], Acta Arith. (2017).
Programs
-
Mathematica
(* View as a table *) Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &], {n, 1, 12}, {k, 1, n}] // TableForm (* Flattened sequence entry as listed here *) Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &], {n, 1, 12}, {k, 1, n}] // Flatten (* Compare with its inverse matrix *) Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &], {n, 1, 12}, {k, 1, 12}] // Inverse // MatrixForm Table[SeriesCoefficient[(q^k)/(1-q^k) QPochhammer[q, q], {q, 0, n}], {n, 1, 12}, {k, 1, 12}] // MatrixForm (* Remove dominant partition function terms in the sequence *) Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &]-PartitionsP[n-k], {n, 1, 12}, {k, 1, n}] // TableForm
-
PARI
T(n, k) = sumdiv(n, d, numbpart(d-k)*moebius(n/d)); tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Nov 17 2018
Formula
Möbius transform of the shifted partition numbers (A000041), p(n-k).
An explicit formula for the triangular sequence is given by:
s_(n,k)^(-1) = Sum_{d|n} p(d-k)*Mobius(n/d), where p(n) is Euler's partition function (A000041) and Mobius(n) is the Mobius function (A008683).
The first column of the sequence is A133732.
The sequence s_(n,k)^(-1) - p(n-k) is expanded as the following similarly shaped triangle:
0;
-1, 0;
-1, 0, 0;
-1, -1, 0, 0;
-1, 0, 0, 0, 0;
-2, -2, -1, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0;
-3, -2, -1, -1, 0, 0, 0, 0;
-2, -1, -1, 0, 0, 0, 0, 0, 0;
-5, -4, -2, -1, -1, 0, 0, 0, 0, 0;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-9, -6, -4, -3, -1, -1, 0, 0, 0, 0, 0, 0;
(in other words, the nonzero terms in the triangle after subtracting off p(n-k) are comparatively sparse at only about half of the remaining entries).
The Lambert series generating function for the sequence at a fixed k >= 1 is given by: Sum_{n >= 1} s_(n,k)^(-1) q^n/(1-q^n) = q^k / (q; q)_inf.
The similarly shaped triangle denoting the inverse matrix of the sequence is given by:
1;
0, 1;
-1, -1, 1;
-1, 0, -1, 1;
-1, -1, -1, -1, 1;
0, 0, 1, -1, -1, 1;
0, 0, -1, 0, -1, -1, 1;
1, 0, 0, 1, 0, -1, -1, 1;
1, 1, 1, 0, 0, 0, -1, -1, 1;
1, 0, 0, -1, 2, 0, 0, -1, -1, 1;
1, 1, 0, 1, -1, 1, 0, 0, -1, -1, 1;
1, 0, 1, 1, 0, 1, 1, 0, 0, -1, -1, 1.
Comments