A286891 Initial primes of 6 consecutive primes with 5 consecutive gaps 10, 8, 6, 4, 2.
41203, 556243, 576193, 715849, 752263, 859249, 891799, 1107763, 1191079, 1201999, 1210369, 1510189, 1601599, 1893163, 2530963, 2678719, 2881243, 3257689, 3431479, 3545263, 3792949, 3804919, 4041109, 4479463, 4867309
Offset: 1
Keywords
Examples
Prime(4313..4318) = {41203, 41213, 41221, 41227, 41231, 41233} and 41203 + 10 = 41213, 41213 + 8 = 41221, 41221 + 6 = 41227, 41227 + 4 = 41231, 41231 + 2 = 41233. Also, prime(68287..68292) = {859249, 859259, 859267, 859273, 859277, 859279} and 859249 + 10 = 859259, 859259 + 8 = 859267, 859267 + 6 = 859273, 859273 + 4 = 859277, 859277 + 2 = 859279.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- R. J. Mathar, Table of Prime Gap Constellations
Crossrefs
Programs
-
GAP
P:=Filtered([1..20000000],IsPrime);; I:=Reversed([2,4,6,8,10]);; P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);; P3:=List(Positions(P2,I),i->P[i]);
-
Maple
K:=10^7: # to get all terms <= K. Primes:=select(isprime,[seq(i,i=3..K+30,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[10,8,6,4,2], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 15 2017
-
Mathematica
Select[Partition[Prime[Range[340000]],6,1],Differences[#]=={10,8,6,4,2}&][[All,1]] (* Harvey P. Dale, Aug 22 2018 *)
Comments