cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286897 Sum T(n,k) of the k-th last entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 5, 1, 23, 6, 1, 109, 33, 7, 1, 544, 182, 45, 8, 1, 2876, 1034, 284, 59, 9, 1, 16113, 6122, 1815, 420, 75, 10, 1, 95495, 37927, 11931, 2987, 595, 93, 11, 1, 597155, 246030, 81205, 21620, 4665, 814, 113, 12, 1, 3929243, 1669941, 573724, 160607, 36900, 6979, 1082, 135, 13, 1
Offset: 1

Views

Author

Alois P. Heinz, May 15 2017

Keywords

Examples

			T(3,2) = 6 because the sum of the second last entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+1+1+2 = 6.
Triangle T(n,k) begins:
      1;
      5,     1;
     23,     6,     1;
    109,    33,     7,    1;
    544,   182,    45,    8,   1;
   2876,  1034,   284,   59,   9,  1;
  16113,  6122,  1815,  420,  75, 10,  1;
  95495, 37927, 11931, 2987, 595, 93, 11, 1;
  ...
		

Crossrefs

Column k=1 gives A278677(n-1).
Row sums give A000110(n) * A000217(n) = A105488(n+3).
Cf. A285595.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, [1, 0],
          (p-> p+[0, n*p[1]*x^1])(b(n-1, [l[], 1]))+
           add((p-> p+[0, n*p[1]*x^(l[j]+1)])(b(n-1,
           sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, [])[2]):
    seq(T(n), n=1..14);
  • Mathematica
    b[0, ] = {1, 0}; b[n, l_] := b[n, l] = Function[p, p + {0, n*p[[1]]*x^1} ][b[n - 1, Append[l, 1]]] + Sum[Function[p, p + {0, n*p[[1]]*x^(l[[j]] + 1)}][b[n - 1, Reverse @ Sort[ReplacePart[l, j -> l[[j]] + 1]]]], {j, 1, Length[l]}];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, n}]][b[n, {}][[2]]];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, May 26 2018, from Maple *)