cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286918 Total number of nodes summed over all lattice paths from (0,0) to (n,n) using steps {(k,0), (0,k) | 0

Original entry on oeis.org

1, 3, 21, 159, 1257, 10046, 81811, 674184, 5605141, 46920874, 394949193, 3339464105, 28343082002, 241324470723, 2060357315568, 17632454524499, 151211115930880, 1299121121946684, 11179500360964780, 96344672766997340, 831385476662968094, 7182777882757416692
Offset: 0

Views

Author

Alois P. Heinz, May 17 2017

Keywords

Crossrefs

Cf. A175891.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, [1$2], add((p-> p+[0, p[1]])(
             b(x-j, y)+b(x, y-j)), j=1..4)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y > x || y < 0, {0, 0}, If[x == 0, {1, 1}, Sum[Function[p, p + {0, p[[1]]}][b[x-j, y] + b[x, y-j]], {j, 1, 4}]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 8.84734830841870961487278801886633962039798... is the real root of the equation 4 + 4*d - 8*d^2 - 8*d^3 + d^4 = 0 and c = 0.43633259077568249345422000202799136319250347607927734138960545201547... - Vaclav Kotesovec, May 30 2017