cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A291055 Number of maximal irredundant sets in the n-path graph.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184, 269, 395, 582, 849, 1255, 1843, 2708, 3982, 5841, 8597, 12631, 18566, 27286, 40082, 58929, 86598, 127279, 187052, 274872, 404001, 593732, 872606, 1282416, 1884660, 2769856, 4070718, 5982611, 8792345
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

From Andrew Howroyd, Aug 23 2017: (Start)
The minimum size of a maximal irredundant set, the irredundance number, is given by ceiling(n/3). A suitable construction for such a set is every third vertex starting with the second if n is a multiple of 3, otherwise starting with the first.
The maximum size of an irredundant set, the upper irredundance number, is given by ceiling(n/2). A suitable construction for such a set is every second vertex starting with the first.
(End)

Examples

			Case n=5: maximal irredundant sets represented as binary words are {00110, 01001, 01010, 01100, 10010, 10101}, so a(5)=6. - _Andrew Howroyd_, Aug 23 2017
		

Crossrefs

Row 1 of A291439.
Row sums of A291375.

Programs

  • Mathematica
    Rest @ CoefficientList[Series[x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - x^6 - 2 x^7 + 3 x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 42}], x] (* Michael De Vlieger, Aug 24 2017 *)
    LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184}, 20] (* Eric W. Weisstein, Aug 28 2017 *)
    RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, -4480566127993567 #^n + 2115784835595702 #^(n+1) - 8803686900182082 #^(n+2) + 12438105918248674 #^(n+3) + 9975829435558087 #^(n+4) + 32647411155695559 #^(n+5) + 921201586573742 #^(n+6) - 12400355965941932 #^(n+7) - 18709447182799197 #^(n+8) - 16194871035876814 #^(n+9) - 8478829128434826 #^(n+10) - 3824486277258301 #^(n+11) + 902031297001609 #^(n+12) + 11119370357865554 #^(n+13) &]/333325507942333403 (* Eric W. Weisstein, Aug 28 2017 *)
  • PARI
    Vec((1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017

Formula

From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 23 2017

A291044 Irregular triangle read by rows: number of maximal irredundant sets of size k in the n-cycle graph.

Original entry on oeis.org

0, 2, 0, 3, 0, 0, 6, 0, 0, 10, 0, 0, 9, 2, 0, 0, 0, 14, 0, 0, 0, 8, 6, 0, 0, 0, 3, 27, 0, 0, 0, 0, 60, 2, 0, 0, 0, 0, 33, 33, 0, 0, 0, 0, 9, 84, 6, 0, 0, 0, 0, 0, 91, 52, 0, 0, 0, 0, 0, 14, 196, 2, 0, 0, 0, 0, 0, 3, 280, 60, 0, 0, 0, 0, 0, 0, 200, 272, 6
Offset: 2

Views

Author

Andrew Howroyd, Aug 16 2017

Keywords

Comments

For each row, k lies in the range 0..floor(n/2). The upper end of the range is the upper irredundance number of the graph.

Examples

			Triangle begins:
  0, 2;
  0, 3;
  0, 0, 6;
  0, 0, 10;
  0, 0,  9   2;
  0, 0,  0, 14;
  0, 0,  0,  8,  6;
  0, 0,  0,  3, 27;
  0, 0,  0,  0, 60,  2;
  0, 0,  0,  0, 33, 33;
  0, 0,  0,  0,  9, 84,   6;
  0, 0,  0,  0,  0, 91,  52;
  0, 0,  0,  0,  0, 14, 196, 2;
  ...
As polynomials these are 2*x; 3*x; 6*x^2; 10*x^2; 9*x^2 + 2*x^3; etc.
		

Crossrefs

Row sums are A286954.

Formula

T(n,k) = 0 for k < ceiling(n/3).
Sum_{k=0..floor(n/2)} T(n,k) = A286954(n). - Eric W. Weisstein, Jun 11 2021

A291048 Number of nonequivalent maximal irredundant sets in the n-cycle graph up to rotation.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 4, 8, 6, 11, 11, 17, 25, 32, 41, 59, 79, 118, 157, 221, 303, 436, 610, 864, 1215, 1724, 2436, 3484, 4926, 7029, 9990, 14270, 20354, 29113, 41572, 59517, 85186, 122127, 175018, 251176, 360404, 517758, 743895, 1069633, 1538313, 2213894
Offset: 1

Views

Author

Andrew Howroyd, Aug 16 2017

Keywords

Comments

Equivalently, the number of n-bead binary necklaces (with turnover not allowed) avoiding the patterns 111, 1101, 1011, 00000, 000010, 010000, 000100, 001000, 0100010.

Examples

			Case n=7: admissible nonequivalent words are 0010011 and 0010101, so a(7)=2.
		

Crossrefs

Cf. A286954.

Programs

  • Mathematica
    Table[(1/n) Sum[EulerPhi[n/d] SeriesCoefficient[x^2*(2 + 3 x + 4 x^2 + 5 x^3 - 7 x^5 - 16 x^6 - 9 x^7 + 20 x^8 + 11 x^9 - 14 x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, d}], {d, Divisors@ n}], {n, 48}] (* Michael De Vlieger, Aug 17 2017 *)
  • PARI
    {my (v=concat([0],Vec((2 + 3*x + 4*x^2 + 5*x^3 - 7*x^5 - 16*x^6 - 9*x^7 + 20*x^8 + 11*x^9 - 14*x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14) + O(x^50))));
    vector(length(v), n, sumdiv(n,d,eulerphi(n/d)*v[d])/n)}

Formula

a(n) = (1/n) * Sum_{d|n} phi(n/d) * A286954(d).

A291063 Number of maximal irredundant sets in the n-wheel graph.

Original entry on oeis.org

1, 3, 4, 7, 11, 12, 15, 15, 31, 63, 67, 100, 144, 213, 344, 479, 698, 993, 1502, 2247, 3252, 4777, 6970, 10284, 15211, 22298, 32728, 47985, 70645, 103962, 152707, 224383, 329509, 484452, 712275, 1046737, 1538165, 2260110, 3321933, 4882575, 7175739
Offset: 2

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

The wheel graph is well defined for n >= 4. Sequence extended to n=2 using formula. - Andrew Howroyd, Aug 19 2017

Crossrefs

Programs

  • Mathematica
    Table[1 + RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, #^(n - 1) &], {n, 2, 20}]
    1 + RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, #^Range[20] &]
    LinearRecurrence[{1, 1, 0, 0, 0, -1, -1, -1, 1, 3, -1, -1, 0, -1, 1}, {1, 3, 4, 7, 11, 12, 15, 15, 31, 63, 67, 100, 144, 213, 344}, 20]
    CoefficientList[
    Series[(1 + 2 x - 6 x^5 - 7 x^6 - 8 x^7 + 9 x^8 + 30 x^9 - 11 x^10 - 12 x^11 - 14 x^13 + 15 x^14)/((1 - x) (1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14)), {x, 0, 20}], x]
  • PARI
    Vec(x^2*(1 + 2*x - 6*x^5 - 7*x^6 - 8*x^7 + 9*x^8 + 30*x^9 - 11*x^10 - 12*x^11 - 14*x^13 + 15*x^14) / ((1 - x)*(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)) + O(x^60)) \\ Colin Barker, Aug 20 2017

Formula

a(n) = A286954(n-1) + 1. - Andrew Howroyd, Aug 19 2017
G.f.: x^2*(1 + 2*x - 6*x^5 - 7*x^6 - 8*x^7 + 9*x^8 + 30*x^9 - 11*x^10 - 12*x^11 - 14*x^13 + 15*x^14) / ((1 - x)*(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)). - Colin Barker, Aug 20 2017

Extensions

a(2)-a(3) and a(21)-a(42) from Andrew Howroyd, Aug 19 2017

A291102 Number of maximal irredundant sets in the n-pan graph.

Original entry on oeis.org

2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272, 405, 593, 867, 1261, 1869, 2760, 4046, 5936, 8712, 12817, 18861, 27720, 40711, 59792, 87915, 129250, 189946, 279118, 410135, 602803, 886008, 1302157, 1913622, 2812220, 4133091, 6074385, 8927330, 13119959
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

Sequence extended to a(1)-a(2) using the formula/recurrence. - Andrew Howroyd, Aug 23 2017

Crossrefs

Programs

  • Mathematica
    Table[-RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, 500851004670498 #^(n+1) - 3689002954543242 #^(n+2) - 4674357321032747 #^(n+3) - 11682114439256677 #^(n+4) + 4235991226348286 #^(n+5) + 7038537508218316 #^(n+6) + 7181640141870472 #^(n+7) + 1546373234795414 #^(n+8) - 8648457478830123 #^(n+9) - 8135065519248445 #^(n+10) - 4540890555566032 #^(n+11) - 5314826024895471 #^(n+12) - 1546564184442276 #^(n+13) + 6933486092556085 #^(n+14) &]/47617929706047629, {n, 20}]
    LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272}, 20]
    CoefficientList[Series[(2 + 2 x + x^2 + 3 x^3 + 2 x^4 - x^5 - 2 x^6 - 6 x^7 - 3 x^8 + 7 x^9 + 3 x^10 - x^11 - 4 x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 20}], x]
  • PARI
    Vec((2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017

Formula

From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)

Extensions

a(1)-a(2) and terms a(21) and beyond from Andrew Howroyd, Aug 23 2017
Showing 1-5 of 5 results.