cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286957 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + k*x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 2, 0, 1, 4, 3, 6, 2, 0, 1, 5, 4, 12, 6, 3, 0, 1, 6, 5, 20, 12, 10, 4, 0, 1, 7, 6, 30, 20, 21, 18, 5, 0, 1, 8, 7, 42, 30, 36, 48, 22, 6, 0, 1, 9, 8, 56, 42, 55, 100, 57, 30, 8, 0, 1, 10, 9, 72, 56, 78, 180, 116, 84, 42, 10, 0, 1, 11, 10, 90, 72, 105, 294, 205, 180, 120, 66, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 17 2017

Keywords

Comments

A(n,k) is the number of partitions of n into distinct parts of k sorts: the parts are unordered, but not the sorts.

Examples

			Square array begins:
1,  1,   1,   1,   1,   1,  ...
0,  1,   2,   3,   4,   5,  ...
0,  1,   2,   3,   4,   5,  ...
0,  2,   6,  12,  20,  30,  ...
0,  2,   6,  12,  20,  30,  ...
0,  3,  10,  21,  36,  55,  ...
		

Crossrefs

Columns k=0-5 give: A000007, A000009, A032302, A032308, A261568, A261569.
Main diagonal gives A291698.
Cf. A246935.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + k x^i), {i, 1, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-k, x]/(1 + k), {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + k*x^j).