cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A291698 a(n) = [x^n] Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 1, 2, 12, 20, 55, 294, 497, 1224, 2520, 14410, 21912, 54300, 104286, 220710, 1105215, 1697552, 3839382, 7356762, 14873580, 26275620, 132112596, 188666126, 423247104, 772560600, 1535398150, 2632049290, 4975242048, 21273166572, 30649985160, 64824339630, 116604788800, 223181224992
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

The number of partitions of n into distinct parts where each part can be colored in n different ways. For example, there are 4 partitions of 6 into distinct parts, namely 6, 5 + 1, 4 + 2 and 3 + 2 + 1; allowing for the colorings gives a(6) = 6 + 6*6 + 6*6 + 6*6*6 = 294. - Peter Bala, Aug 31 2017

Crossrefs

Main diagonal of A286957.

Programs

  • Maple
    seq(coeff(mul(1+n*x^k,k=1..n),x,n),n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + n x^k, {k, 1, n}], {x, 0, n}], {n, 0, 32}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/(1 + n), {x, 0, n}], {n, 0, 32}]

Formula

a(n) = A286957(n,n).
a(n) == 0 (mod n); a(n) == n (mod n^2). - Peter Bala, Aug 31 2017
Conjecture: a(n) ~ exp(sqrt(2*(log(n)^2 + Pi^2/3)*n)) * (log(n)^2 + Pi^2/3)^(1/4) / (sqrt(Pi) * (2*n)^(5/4)). - Vaclav Kotesovec, Sep 15 2017

A292131 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - k*x^j).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -2, 0, 0, 1, -4, -3, 2, 0, 0, 1, -5, -4, 6, 2, 1, 0, 1, -6, -5, 12, 6, 6, 0, 0, 1, -7, -6, 20, 12, 15, -2, 1, 0, 1, -8, -7, 30, 20, 28, -12, 2, 0, 0, 1, -9, -8, 42, 30, 45, -36, -3, -6, 0, 0, 1, -10, -9, 56, 42, 66, -80
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -2, -3, -4, ...
   0, -1, -2, -3, -4, ...
   0,  0,  2,  6, 12, ...
   0,  0,  2,  6, 12, ...
		

Crossrefs

Columns k=0..3 give A000007, A010815, A070877, A292128.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292132.

A292133 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + k*x^j).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, -1, 0, 1, -4, 6, -6, 1, 0, 1, -5, 12, -21, 14, -1, 0, 1, -6, 20, -52, 69, -26, 1, 0, 1, -7, 30, -105, 220, -201, 50, -1, 0, 1, -8, 42, -186, 545, -868, 591, -102, 2, 0, 1, -9, 56, -301, 1146, -2705, 3436, -1785, 214, -2, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,   1,   1, ...
   0, -1, -2,  -3,  -4, ...
   0,  0,  2,   6,  12, ...
   0, -1, -6, -21, -52, ...
   0,  1, 14,  69, 220, ...
		

Crossrefs

Columns k=0..3 give A000007, A081362, A071109, A261582.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292134.

A382993 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} phi(n/d) * (-k)^d.

Original entry on oeis.org

1, 2, 0, 3, -1, 1, 4, -3, 4, 0, 5, -6, 11, -4, 1, 6, -10, 24, -21, 8, 0, 7, -15, 45, -66, 51, -10, 1, 8, -21, 76, -160, 208, -119, 20, 0, 9, -28, 119, -330, 629, -676, 315, -34, 1, 10, -36, 176, -609, 1560, -2590, 2344, -831, 60, 0, 11, -45, 249, -1036, 3367, -7750, 11165, -8226, 2195, -100, 1
Offset: 1

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Examples

			Square array begins:
  1,   2,    3,    4,     5,     6,      7, ...
  0,  -1,   -3,   -6,   -10,   -15,    -21, ...
  1,   4,   11,   24,    45,    76,    119, ...
  0,  -4,  -21,  -66,  -160,  -330,   -609, ...
  1,   8,   51,  208,   629,  1560,   3367, ...
  0, -10, -119, -676, -2590, -7750, -19565, ...
  1,  20,  315, 2344, 11165, 39996, 117655, ...
		

Crossrefs

Columns k=1..5 give A000035, (-1)^(n+1) * A074763(n), A343465, A343466, A343467.
Main diagonal gives A382998.

Programs

  • PARI
    a(n, k) = -sumdiv(n, d, eulerphi(n/d)*(-k)^d)/n;

Formula

A(n,k) = (1/n) * A382994(n,k).
A(n,k) = -(1/n) * Sum_{j=1..n} (-k)^gcd(n,j).
G.f. of column k: Sum_{j>=1} phi(j) * log(1 + k*x^j) / j.
Product_{n>=1} 1/(1 - x^n)^A(n,k) = Product_{n>=1} (1 + k*x^n).

A304782 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 2, 5, 19, 49, 126, 469, 1177, 2881, 6481, 23101, 53725, 127153, 274288, 581925, 1860751, 4155649, 9279791, 19409221, 39839239, 77052401, 229393207, 481747949, 1035561408, 2082441025, 4153434376, 7822058869, 14686515649, 39394280689, 79657493191, 163600884901
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[(1 + n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/(1 - x) Exp[Sum[(-1)^(k + 1) n^k x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/((1 + n) (1 - x)), {x, 0, n}], {n, 0, 30}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*n^k*x^k/(k*(1 - x^k))).
a(n) = Sum_{j=0..n} A286957(j,n).
Showing 1-5 of 5 results.