cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286984 Decimal expansion of (2 + sqrt(5) + sqrt(15 - 6*sqrt(5)))/2.

Original entry on oeis.org

2, 7, 4, 7, 2, 3, 8, 2, 7, 4, 9, 3, 2, 3, 0, 4, 3, 3, 3, 0, 5, 7, 4, 6, 5, 1, 8, 6, 1, 3, 4, 2, 0, 2, 8, 2, 6, 7, 5, 8, 1, 6, 3, 8, 7, 8, 7, 7, 6, 1, 6, 7, 9, 8, 7, 7, 8, 3, 8, 0, 4, 3, 7, 3, 8, 5, 6, 2, 2, 4, 3, 6, 4, 8, 5, 3, 8, 3, 0, 1, 5, 0, 3, 4, 3, 1, 5
Offset: 1

Views

Author

Felix Fröhlich, May 17 2017

Keywords

Comments

See Question 722 on page 219 of Berndt and Rankin, 2001. This says, in part: "Solve completely x^2 = a + y, y^2 = a + z, z^2 = a + u, u^2 = a + x and deduce that, if x = sqrt(5 + sqrt(5 + sqrt(5 - sqrt(5 + x)))), then x = 1/2(2 + sqrt(5) + sqrt(15 - 6*sqrt(5))), ....".
A quartic integer with minimal polynomial x^4 - 4x^3 - 4x^2 + 31x - 29. - Charles R Greathouse IV, May 17 2017

Examples

			2.74723827493230433305746518613420282675...
		

References

  • B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0-8218-2624-7.

Crossrefs

Programs

  • Mathematica
    RealDigits[(2 + Sqrt[5] + Sqrt[15-6*Sqrt[5]])/2, 10, 120][[1]] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    default(realprecision, 90); (2+sqrt(5)+sqrt(15-6*sqrt(5)))/2
    
  • PARI
    solve(x=2,3,x-sqrt(5+sqrt(5+sqrt(5-sqrt(5 + x))))) \\ Hugo Pfoertner, Sep 02 2018