A286985 Number of connected dominating sets in the n-prism graph.
7, 7, 39, 115, 343, 967, 2663, 7203, 19239, 50887, 133543, 348179, 902775, 2329607, 5986535, 15327555, 39115847, 99532423, 252601127, 639548595, 1615746455, 4073951559, 10253517671, 25763632995, 64635943783, 161928486727, 405134009511, 1012371656275
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (6, -11, 4, 5, -2, -1).
Programs
-
Mathematica
Rest @ CoefficientList[Series[x (7 - 35 x + 74 x^2 - 70 x^3 + 19 x^4 - 3 x^5)/((1 - x)^2*(1 - 2 x - x^2)^2), {x, 0, 28}], x] (* Michael De Vlieger, Sep 04 2017 *) Table[LucasL[n, 2] + 2 n (3 Fibonacci[n - 2, 2] + Fibonacci[n - 1, 2] - 1) + 1, {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *) LinearRecurrence[{6, -11, 4, 5, -2, -1}, {7, 7, 39, 115, 343, 967}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
-
PARI
Vec((7 - 35*x + 74*x^2 - 70*x^3 + 19*x^4 - 3*x^5)/((1 - x)^2*(1 - 2*x - x^2)^2) + O(x^30))
Formula
From Andrew Howroyd, Sep 04 2017: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6) for n > 6.
G.f.: x*(7 - 35*x + 74*x^2 - 70*x^3 + 19*x^4 - 3*x^5)/((1 - x)^2*(1 - 2*x - x^2)^2).
(End)
Extensions
a(1)-a(2) and terms a(14) and beyond from Andrew Howroyd, Sep 04 2017
Comments