cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286986 Number of connected dominating sets in the n-antiprism graph.

Original entry on oeis.org

3, 15, 54, 175, 543, 1642, 4875, 14271, 41310, 118487, 337263, 953810, 2682579, 7508655, 20929158, 58121407, 160877055, 443993146, 1222110555, 3355879647, 9195143598, 25144855655, 68635721679, 187035899810, 508896450723, 1382653280847, 3751638404310
Offset: 1

Views

Author

Eric W. Weisstein, May 17 2017

Keywords

Programs

  • Mathematica
    Table[6 n ChebyshevU[n - 1, 3/2] + (1 - 2 n) LucasL[2 n], {n, 30}] (* Eric W. Weisstein, May 17 2017 *)
    LinearRecurrence[{6, -11, 6, -1}, {3, 15, 54, 175}, 30] (* Eric W. Weisstein, May 17 2017 *)
    Rest[CoefficientList[Series[(3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4), {x,0,50}], x]] (* G. C. Greubel, May 17 2017 *)
  • PARI
    x='x+O('x^50); Vec((3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4)) \\ G. C. Greubel, May 17 2017

Formula

From G. C. Greubel, May 17 2017: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
G.f.: (3 - 3*x - 3*x^2 - 2*x^3)*x/(1 - 6*x + 11*x^2 - 6*x^3 + x^4). (End)
a(n) = 28*A001871(n) -72*A001871(n-1) -15*A001906(n)-26*A001906(n+1). - R. J. Mathar, Dec 16 2024