cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287027 Least sum s of consecutive prime numbers starting with prime(n) such that s is a perfect square.

Original entry on oeis.org

100, 961, 36, 14017536, 484, 49, 36, 134689, 354025, 80089, 443556, 121, 47524, 7744, 100, 700569, 344956329, 48841, 5329, 144, 324, 39601, 22801, 8649, 239438955625, 12250000, 197136, 222784, 147456, 319225, 316969, 24649, 576, 2975625, 7396, 21316, 70036245333532859364
Offset: 1

Views

Author

Zak Seidov, May 18 2017

Keywords

Comments

Squares that are the sum of 4 consecutive primes: 36, 324, 576, 1764, 2304, 4900, 20736, 63504, 66564, 128164, 142884, 150544, 156816, 183184, 236196, 256036, 260100, 311364, 369664, 414736.
Squares that are the sum of 5 consecutive primes: 961, 1089, 1681, 17689, 18769, 21025, 23409, 45369, 76729, 80089, 97969, 124609, 218089, 235225, 290521, 421201, 434281.
Squares that are the sum of 6 consecutive primes: 3600, 24336, 25600, 47524, 66564, 98596, 129600, 138384, 228484, 236196, 331776, 379456, 404496, 490000, 559504.
Squares that are the sum of 7 consecutive primes: 169, 625, 2209, 10201, 25921, 235225, 342225, 361201, 380689, 383161, 426409, 508369, 531441, 537289, 543169, 564001, 603729.
Note that A007504(m) - A007504(n) ~ m^2 log(m)/2 as m -> infinity. Heuristically this has probability ~ 1/(m sqrt(2 log(m))) of being a square. Since the sum of these probabilities diverges, on the basis of the second Borel-Cantelli lemma we should expect a(n) to exist. Of course, this is not a proof. Moreover, since the sum diverges very slowly, we might expect some very large values of a(n). - Robert Israel, May 18 2017

Examples

			Sum of set {2,3,5,7,11,13,17,19,23} is 100 = 10^2, sum of set {3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83} is 961=31^2, sum of set {5,7,11,13}=36=6^2.
		

Crossrefs

Cf. A062703 (squares that are the sum of 2 consecutive primes), A080665 (squares that are the sum of 3 consecutive primes), A034707 (numbers that are sums of consecutive primes).
Cf. A007504.

Programs

  • Maple
    f:= proc(n) local p, s;
      p:= ithprime(n); s:= p;
    while not issqr(s) do p:= nextprime(p); s:= s+p od:
      s
    end proc:
    map(f, [$1..36]); # Robert Israel, May 18 2017
  • Mathematica
    Table[Set[{k, s}, {n, 0}]; While[! IntegerQ@ Sqrt[AddTo[s, Prime@ k]], k++]; s, {n, 36}] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    a(n) = my(s=0); forprime(p=prime(n), , s=s+p; if(issquare(s), return(s))) \\ Felix Fröhlich, May 25 2017

Extensions

Missing a(25) and a(37) from Giovanni Resta, May 18 2017