cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A286882 Number of minimal dominating sets in the n X n knight graph.

Original entry on oeis.org

1, 1, 14, 243, 2686, 161458
Offset: 1

Views

Author

Eric W. Weisstein, Aug 02 2017

Keywords

Crossrefs

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 19 2017

A303155 Number of total dominating sets in the n X n knight graph.

Original entry on oeis.org

0, 0, 0, 15625, 7210119, 7595819716, 38315570995200, 907603926752600100, 90471688044300692000805, 36477409490805834487688340121, 57078206407327794909123594938975856, 349529784665230581716185532814423836231824, 8484852661962127775820139948519390269746327643440
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2018

Keywords

Crossrefs

Extensions

Terms a(6) and beyond from Andrew Howroyd, Apr 20 2018

A290785 Number of irredundant sets in the n X n knight graph.

Original entry on oeis.org

2, 16, 150, 5771, 270411, 51462132
Offset: 1

Views

Author

Eric W. Weisstein, Aug 10 2017

Keywords

Crossrefs

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 19 2017

A291099 Number of maximal irredundant sets in the n X n knight graph.

Original entry on oeis.org

1, 1, 14, 277, 7796, 478904
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Crossrefs

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 19 2017

A291705 Number of connected dominating sets in the n X n knight graph.

Original entry on oeis.org

1, 0, 0, 11140, 6635521, 7249082465, 35733685780960
Offset: 1

Views

Author

Eric W. Weisstein, Aug 30 2017

Keywords

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Sep 04 2017

A289201 Number of maximal independent vertex sets (and minimal vertex covers) in the n X n knight graph.

Original entry on oeis.org

1, 1, 10, 31, 172, 2253, 50652, 900243, 26990541, 1534414257
Offset: 1

Views

Author

Eric W. Weisstein, Jun 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[FindIndependentVertexSet[KnightTourGraph[n, n], Infinity, All]], {n, 7}]
  • Python
    from networkx import empty_graph, find_cliques, complement
    def A289201(n):
        G = empty_graph((i,j) for i in range(n) for j in range(n))
        G.add_edges_from(((i,j),(i+k,j+l)) for i in range(n) for j in range(n) for (k,l) in ((1,2),(1,-2),(-1,2),(-1,-2),(2,1),(2,-1),(-2,1),(-2,-1)) if 0<=i+kChai Wah Wu, Jan 11 2024

Extensions

a(9)-a(10) from Andrew Howroyd, Jul 01 2017
Showing 1-6 of 6 results.