cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287143 Expansion of x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).

Original entry on oeis.org

0, 1, 4, 9, 21, 35, 65, 95, 155, 210, 315, 406, 574, 714, 966, 1170, 1530, 1815, 2310, 2695, 3355, 3861, 4719, 5369, 6461, 7280, 8645, 9660, 11340, 12580, 14620, 16116, 18564, 20349, 23256, 25365, 28785, 31255, 35245, 38115, 42735, 46046, 51359, 55154, 61226, 65550, 72450, 77350, 85150, 90675, 99450, 105651, 115479
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + x^2)/((1 - x)^5 (1 + x)^4), {x, 0, 52}], x]
    LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 1, 4, 9, 21, 35, 65, 95, 155}, 53]

Formula

G.f.: x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Generalized 4-dimensional figurate numbers (A002418): (5*n - 1)*binomial(n + 2,3)/4, n = 0,+1,-3,+2,-4,+3,-5, ...
Convolution of the sequences A027656 and A085787.
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(5*(2*n^2+10*n+3)-3*(2*n+5)*(-1)^n)/3072. - Luce ETIENNE, Nov 18 2017