A287164 Primes having a unique partition into three squares.
2, 3, 5, 11, 13, 19, 37, 43, 67, 163
Offset: 1
Examples
------------------------------- | n | a(n) | representation | |-----------------------------| | 1 | 2 | 0^2 + 1^2 + 1^2 | | 2 | 3 | 1^2 + 1^2 + 1^2 | | 3 | 5 | 0^2 + 1^2 + 2^2 | | 4 | 11 | 1^2 + 1^2 + 3^2 | | 5 | 13 | 0^2 + 2^2 + 3^2 | | 6 | 19 | 1^2 + 3^2 + 3^2 | | 7 | 37 | 0^2 + 1^2 + 6^2 | | 8 | 43 | 3^2 + 3^2 + 5^2 | | 9 | 67 | 3^2 + 3^2 + 7^2 | | 10 | 163 | 1^2 + 9^2 + 9^2 | ------------------------------- 157 is the prime of the form x^2 + y^2 + z^2 with x, y, z >= 0, but is not in the sequence because 157 = 0^2 + 6^2 + 11^2 = 2^2 + 3^2 + 12^2.
Programs
-
Mathematica
Select[Range[200], Length[PowersRepresentations[#, 3, 2]] == 1 && PrimeQ[#] &]
Comments