cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287195 Independence and clique covering number of the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 3, 3, 5, 9, 9, 12, 18, 18, 22, 30, 30, 35, 45, 45, 51, 63, 63, 70, 84, 84, 92, 108, 108, 117, 135, 135, 145, 165, 165, 176, 198, 198, 210, 234, 234, 247, 273, 273, 287, 315, 315, 330, 360, 360, 376, 408, 408, 425, 459, 459, 477, 513, 513, 532, 570, 570
Offset: 1

Views

Author

Eric W. Weisstein, May 21 2017

Keywords

Comments

a(n) is also the length of row n in A244500.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 3, 3, 5, 9, 9, 12}, 50]
    Table[1/18 ((n + 3) (3 n + 2) - 2 (n + 3) Cos[2 n Pi/3] - 2 Sqrt[3] (n + 1) Sin[2 n Pi/3]), {n, 50}]
    Table[Piecewise[{{n (n + 3), Mod[n, 3] == 0}, {(n + 1) (n + 2), Mod[n, 3] == 1}, {(n + 1) (n + 4), Mod[n, 3] == 2}}]/6, {n, 50}]
  • PARI
    Vec(x*(1 + 2*x) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Jul 15 2017

Formula

From Colin Barker, Jul 15 2017: (Start)
G.f.: x*(1 + 2*x) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>7. (End)
From Ridouane Oudra, Jun 23 2024: (Start)
a(n) = Sum_{i=1..n+3} (i mod 3)*floor(i/3);
a(n) = (1/2)*(n^2 + n + (n^2 - 5*n)*t -(6*n - 9)*t^2 + 9*t^3), where t = floor(n/3);
a(n) = A066377(n+1) - A092353(n). (End)
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6 + 14*x + 3*x^2) - 2*(3 + x)*cos(sqrt(3)*x/2) - 2*sqrt(3)*(1 - x)*sin(sqrt(3)*x/2))/18. - Stefano Spezia, Jun 23 2024