cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287276 Number of set partitions of [n] such that for each block all absolute differences between consecutive elements are <= four.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 188, 696, 2606, 9800, 36931, 139303, 525658, 1983925, 7488281, 28265353, 106692425, 402731694, 1520195297, 5738304135, 21660476556, 81762200416, 308629323572, 1164989004846, 4397506361848, 16599351862867, 62657893108843, 236515956134402
Offset: 0

Views

Author

Alois P. Heinz, May 22 2017

Keywords

Examples

			a(6) = 188 = 203 - 15 = A000110(6) - 15 counts all set partitions of [6] except: 16|2345, 16|234|5, 16|235|4, 16|23|45, 16|23|4|5, 16|245|3, 16|24|35, 16|24|3|5, 16|25|34, 16|2|345, 16|2|34|5, 16|25|3|4, 16|2|35|4, 16|2|3|45, 16|2|3|4|5.
		

Crossrefs

Column k=4 of A287214.
Cf. A000110.

Programs

  • Mathematica
    LinearRecurrence[{5,-4,-1,-7,7,0,1,-1},{1,1,2,5,15,52,188,696},30] (* Harvey P. Dale, Jan 02 2021 *)

Formula

G.f.: -(x^7+x^5-6*x^4-x^2+4*x-1)/(x^8-x^7-7*x^5+7*x^4+x^3+4*x^2-5*x+1).
a(n) = A287214(n,4).
a(n) = A000110(n) for n <= 5.