A287277 Number of set partitions of [n] such that for each block all absolute differences between consecutive elements are <= five.
1, 1, 2, 5, 15, 52, 203, 825, 3442, 14589, 62361, 267663, 1151563, 4960725, 21384434, 92216247, 397743421, 1715713298, 7401353547, 31929410019, 137745628418, 594249218505, 2563666285385, 11060009097685, 47714467256725, 205847216392033, 888055467635514
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
- Wikipedia, Partition of a set
- Index entries for linear recurrences with constant coefficients, signature (6,-6,-4,-3,-28,54,16,-16,6,-30,-4,13,0,2,0,-1).
Programs
-
Mathematica
CoefficientList[Series[-(x^15+x^14-x^13-12x^11-10x^10+17x^9+5x^8+20x^7+19x^6-31x^5- 4x^4- 3x^3-2x^2+5x-1)/((x^6+x^5-x^4-3x^2-x+1)(x^10-x^9-x^7-9x^6+10x^5+9x^4-7x^3+ 4x^2- 5x+1)),{x,0,30}],x] (* or *) LinearRecurrence[{6,-6,-4,-3,-28,54,16,-16,6,-30,-4,13,0,2,0,-1},{1,1,2,5,15,52,203,825,3442,14589,62361,267663,1151563,4960725,21384434,92216247},30] (* Harvey P. Dale, Jan 05 2024 *)