A287303 Primes that can be generated by the concatenation in base 4, in descending order, of two consecutive integers read in base 10.
19, 101, 271, 1429, 1559, 1949, 2339, 2729, 3119, 3769, 4159, 17989, 18503, 19531, 21587, 24671, 27241, 29297, 30839, 32381, 33409, 33923, 36493, 44203, 47287, 51913, 55511, 64763, 286999, 289049, 293149, 295199, 301349, 305449, 323899, 332099, 336199, 350549, 375149
Offset: 1
Examples
3 and 4 in base 4 are 3 and 10 and concat(10,3) = 103 in base 10 is 19; 5 and 6 in base 4 are 11 and 12 and concat(12,11) = 1211 in base 10 are 101.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,4),i=1..1000);
-
Mathematica
With[{b = 4}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 370], 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *) Select[Table[FromDigits[Join[IntegerDigits[n+1,4],IntegerDigits[n,4]],4],{n,1000}],PrimeQ] (* Harvey P. Dale, Dec 28 2024 *)