A287315 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.
1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0
Examples
Triangle starts: 0: [1] 1: [0, 1] 2: [0, 1, 3] 3: [0, 1, 16, 19] 4: [0, 1, 65, 299, 211] 5: [0, 1, 246, 3156, 7346, 3651] 6: [0, 1, 917, 28722, 160322, 237517, 90921] 7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513] ... Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
Programs
-
Maple
Delta := proc(a, n) local del, A, u; A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1)); for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end: A287315_row := n -> Delta(A287314_poly(n), n): for n from 0 to 7 do A287315_row(n) od; A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1): for n from 0 to 4 do A287315_eulerian(n,x) od;
Formula
Sum_{k=0..n} T(n,k) = A001044(n).