cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287315 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
Offset: 0

Views

Author

Peter Luschny, May 29 2017

Keywords

Examples

			Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1,    3]
3: [0, 1,   16,     19]
4: [0, 1,   65,    299,     211]
5: [0, 1,  246,   3156,    7346,    3651]
6: [0, 1,  917,  28722,  160322,  237517,   90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
		

Crossrefs

T(n,n) = A000275(n).
Cf. A192721 (variant), A001044, A287314, A287316.

Programs

  • Maple
    Delta := proc(a, n) local del, A, u;
    A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
    for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
    A287315_row := n -> Delta(A287314_poly(n), n):
    for n from 0 to 7 do A287315_row(n) od;
    A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
    for n from 0 to 4 do A287315_eulerian(n,x) od;

Formula

Sum_{k=0..n} T(n,k) = A001044(n).