A283435
Triangle read by rows: T(n,m) is the number of binary pattern classes in the (n,m)-rectangular grid with half 1's and half 0's: two patterns are in same class if one can be obtained by a reflection or 180-degree rotation of the other (ordered occurrences rounded up/down if m*n is odd).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 2, 6, 39, 1, 4, 22, 252, 3270, 1, 6, 66, 1675, 46448, 1302196, 1, 10, 246, 12300, 676732, 38786376, 2268820290, 1, 19, 868, 88900, 10032648, 1134474924, 134564842984, 15801337532526
Offset: 0
For n = 3 and m = 2 the T(3,2) = 6 solutions are colorings of 3 X 2 matrices in 2 colors inequivalent under the action of the Klein group with exactly 3 occurrences of each color (coefficient of x1^3 x2^3).
Triangle begins:
======================================
n\m | 0 1 2 3 4 5
----|---------------------------------
0 | 1
1 | 1 1
2 | 1 1 3
3 | 1 2 6 39
4 | 1 4 22 252 3270
5 | 1 6 66 1675 46448 1302196
A286892
Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-third each of 1s, 2s and 3s (ordered occurrences rounded up/down if m*n != 0 mod 3).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 3, 27, 438, 1, 6, 140, 8766, 504504, 1, 16, 1056, 189774, 33258880, 6573403050, 1, 48, 8730, 4292514, 2366403930, 1387750992012, 846182953495152, 1, 108, 63108, 99797220, 159511561440, 282061024690536, 530143167401850960, 976645996512669379710
Offset: 0
For n = 3 and m = 2 the T(3,2) = 27 solutions are colorings of 3 X 2 matrices in 3 colors inequivalent under the action of the Klein group with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2).
Triangle begins:
=================================================
n\m | 0 1 2 3 4 5
----|--------------------------------------------
0 | 1
1 | 1 1
2 | 1 1 3
3 | 1 3 27 438
4 | 1 6 140 8766 504504
5 | 1 16 1056 189774 33258880 6573403050
A287020
Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-fourth each of 1s, 2s, 3s and 4s (ordered occurrences rounded up/down if n*m != 0 mod 4).
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 1, 1, 46, 1926, 1, 12, 648, 92544, 15767640, 1, 30, 6312, 3943710, 2933201376, 2061379857600, 1, 90, 92400, 192994200, 577186150464, 1605824110657800, 5363188066566330000, 1, 318, 1051140, 10266445476, 118129589107200, 1340797019145183600
Offset: 0
For n = 4 and m = 2 the T(4,2) = 648 solutions are colorings of 4 X 2 matrices in 4 colors inequivalent under the action of the Klein group with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2 x4^2).
Triangle begins:
========================================================
n\m | 0 1 2 3 4 5
----|---------------------------------------------------
0 | 1
1 | 1 1
2 | 1 1 6
3 | 1 1 46 1926
4 | 1 12 648 92544 15767640
5 | 1 30 6312 3943710 2933201376 2061379857600
A287021
Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-fifth of 1s, 2s, 3s, 4s and 5s (ordered occurrences rounded up/down if n*m != 0 mod 5).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 90, 5712, 1, 1, 1260, 416064, 168168000, 1, 60, 28440, 42045600, 76385194200, 155840192585280, 1, 180, 415800, 3216282300, 31168037156256, 342718542439257600, 3574641463338838464000, 1, 630, 8408400, 320818773240, 14181456923282880, 794364769671213312000, 40694019408428534970822000, 2416738787895064029335795945088
Offset: 0
For n = 5 and m = 2 the T(5,2) = 28440 solutions are colorings of 5 X 2 matrices in 5 colors inequivalent under the action of the Klein group with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2 x4^2 x5^2).
Triangle begins:
============================================================
n\m | 0 1 2 3 4 5
----|-------------------------------------------------------
0 | 1
1 | 1 1
2 | 1 1 1
3 | 1 1 90 5712
4 | 1 1 1260 416064 168168000
5 | 1 60 28440 42045600 76385194200 155840192585280
A287377
Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-seventh each of 1's, 2's, 3's, 4's, 5's, 6's and 7's (ordered occurrences rounded up/down if n*m != 0 mod 7).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 22680, 1, 1, 5040, 3742560, 4540536000, 1, 1, 113400, 851370480, 6518191680000, 54111175679736000
Offset: 0
For n = 4 and m = 2 the T(4,2) = 5040 solutions are colorings of 4 X 2 matrices in 7 colors inequivalent under the action of the Klein group with exactly 2, 1, 1, 1, 1, 1, 1 occurrences of each color (coefficient of x1^2 x2^1 x3^1 x4^1 x5^1 x6^1 x7^1).
Triangle begins:
==============================================================
n\m | 0 1 2 3 4 5
----|---------------------------------------------------------
0 | 1
1 | 1 1
2 | 1 1 1
3 | 1 1 1 22680
4 | 1 1 5040 3742560 4540536000
5 | 1 1 113400 851370480 6518191680000 54111175679736000
A287378
Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-eighth each of 1's, 2's, 3's, 4's, 5's, 6's, 7's and 8's (ordered occurrences rounded up/down if n*m != 0 mod 8).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 45360, 1, 1, 10080, 7484544, 20432442240, 1, 1, 226800, 2554075440, 29331862801920, 577185873264000000
Offset: 0
For n = 4 and m = 2, the T(4,2) = 10080 solutions are colorings of 4 X 2 matrices in 8 colors inequivalent under the action of the Klein group with exactly 1 occurrence of each color (coefficient of x1^1, x2^1, x3^1, x4^1, x5^1, x6^1, x7^1, x8^1).
Triangle begins:
=================================================================
n\m | 0 1 2 3 4 5
----|------------------------------------------------------------
0 | 1
1 | 1 1
2 | 1 1 1
3 | 1 1 1 45360
4 | 1 1 10080 7484544 20432442240
5 | 1 1 226800 2554075440 29331862801920 577185873264000000
A287384
Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-tenth each of 1's, 2's, 3's, 4's, 5's, 6's, 7's, 8's, 9's and 0's (ordered occurrences rounded up/down if n*m != 0 mod 10).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29937600, 81729648000, 1, 1, 907200, 10216209600, 593970221376000, 15584018578345728000, 1, 1, 29937600, 6252318979200, 1870082229375360000, 1096699334071461120000000, 375493744214599112902800000000
Offset: 0
For n = 4 and m = 3 the T(4,3)=29937600 solutions are colorings of 4 X 3 matrices in 10 colors inequivalent under the action of the Klein group with exactly 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 occurrences of each color (coefficient of x1^2 x2^2 x3^1 x4^1 x5^1 x6^1 x7^1 x8^1 x9^1 x10^1).
Triangle begins:
==========================================
n\m | 0 1 2 3 4
----|-------------------------------------
0 | 1
1 | 1 1
2 | 1 1 1
3 | 1 1 1 1
4 | 1 1 1 29937600 81729648000
Showing 1-7 of 7 results.
Comments