A287416 Number T(n,k) of set partitions of [n] such that the maximal value of all absolute differences between least elements of consecutive blocks and between consecutive elements within the blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
1, 1, 0, 2, 0, 3, 2, 0, 4, 8, 3, 0, 5, 22, 19, 6, 0, 6, 52, 81, 48, 16, 0, 7, 114, 289, 267, 147, 53, 0, 8, 240, 941, 1250, 968, 529, 204, 0, 9, 494, 2894, 5310, 5469, 3919, 2174, 878, 0, 10, 1004, 8601, 21256, 28083, 25326, 17593, 9961, 4141
Offset: 0
Examples
T(4,1) = 4: 1234, 1|234, 1|2|34, 1|2|3|4. T(4,2) = 8: 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 1|23|4, 1|24|3. T(4,3) = 3: 123|4, 14|23, 14|2|3. T(5,3) = 19: 1235|4, 123|45, 123|4|5, 125|34, 125|3|4, 134|25, 134|2|5, 13|24|5, 13|25|4, 145|23, 14|235, 14|23|5, 1|234|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 1|25|34, 1|25|3|4. Triangle T(n,k) begins: 1; 1; 0, 2; 0, 3, 2; 0, 4, 8, 3; 0, 5, 22, 19, 6; 0, 6, 52, 81, 48, 16; 0, 7, 114, 289, 267, 147, 53; 0, 8, 240, 941, 1250, 968, 529, 204; ...
Links
- Alois P. Heinz, Rows n = 0..23, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, k, l, t) option remember; `if`(n<1, 1, `if`(t-n>k, 0, b(n-1, k, map(x-> `if`(x-n>=k, [][], x), [l[], n]), n)) +add( b(n-1, k, sort(map(x-> `if`(x-n>=k, [][], x), subsop(j=n, l))), `if`(t-n>k, infinity, t)), j=1..nops(l))) end: A:= (n, k)-> b(n, min(k, n-1), [], n): T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
-
Mathematica
b[n_, k_, l_, t_] := b[n, k, l, t] = If[n < 1, 1, If[t - n > k, 0, b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n], n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]], If[t - n > k, Infinity, t]], {j, 1, Length[l]}]]; A[n_, k_] := b[n, Min[k, n - 1], {}, n]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 12}, { k, 0, Max[n - 1, 0]}] // Flatten (* Jean-François Alcover, May 24 2018, translated from Maple *)
Comments