A287215
Number T(n,k) of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 21, 7, 1, 1, 65, 86, 39, 11, 1, 1, 209, 361, 209, 77, 19, 1, 1, 732, 1584, 1123, 493, 171, 35, 1, 1, 2780, 7315, 6153, 3124, 1293, 413, 67, 1, 1, 11377, 35635, 34723, 20019, 9320, 3709, 1059, 131, 1, 1, 49863, 183080, 202852, 130916, 66992, 30396, 11373, 2837, 259, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
T(4,3) = 1: 123|4.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1;
1, 8, 5, 1;
1, 22, 21, 7, 1;
1, 65, 86, 39, 11, 1;
1, 209, 361, 209, 77, 19, 1;
1, 732, 1584, 1123, 493, 171, 35, 1;
Columns k=0-10 give:
A000012,
A003101(n-1),
A322875,
A322876,
A322877,
A322878,
A322879,
A322880,
A322881,
A322882,
A322883.
-
b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
`if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
end:
A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
-
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];
A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, {k, 0, Max[n - 1, 0]}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
A287213
Number T(n,k) of set partitions of [n] such that the maximal absolute difference between consecutive elements within a block equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 7, 5, 2, 1, 15, 18, 13, 5, 1, 31, 57, 61, 38, 15, 1, 63, 169, 248, 215, 129, 52, 1, 127, 482, 935, 1061, 836, 495, 203, 1, 255, 1341, 3368, 4835, 4789, 3573, 2108, 877, 1, 511, 3669, 11777, 20973, 25430, 22986, 16657, 9831, 4140
Offset: 0
T(4,0) = 1: 1|2|3|4.
T(4,1) = 7: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34.
T(4,2) = 5: 124|3, 134|2, 13|24, 13|2|4, 1|24|3.
T(4,3) = 2: 14|23, 14|2|3.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1;
1, 7, 5, 2;
1, 15, 18, 13, 5;
1, 31, 57, 61, 38, 15;
1, 63, 169, 248, 215, 129, 52;
1, 127, 482, 935, 1061, 836, 495, 203;
Columns k=0-10 give:
A000012,
A000225(n-1),
A258109,
A294052,
A294053,
A294054,
A294055,
A294056,
A294057,
A294058,
A294059.
Row sums and T(n+2,n+1) give
A000110.
-
b:= proc(n, k, l) option remember; `if`(n=0, 1, b(n-1, k, map(x->
`if`(x-n>=k, [][], x), [l[], n]))+add(b(n-1, k, sort(map(x->
`if`(x-n>=k, [][], x), subsop(j=n, l)))), j=1..nops(l)))
end:
A:= (n, k)-> b(n, min(k, n-1), []):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
-
b[0, , ] = 1; b[n_, k_, l_] := b[n, k, l] =b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]]], {j, 1, Length[l]}];
A[n_, k_] := b[n, Min[k, n - 1], {}];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[Table[T[n, k], {k, 0, Max[n - 1, 0]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A287417
Number A(n,k) of set partitions of [n] such that all absolute differences between least elements of consecutive blocks and between consecutive elements within the blocks are not larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 2, 5, 4, 0, 1, 1, 2, 5, 12, 5, 0, 1, 1, 2, 5, 15, 27, 6, 0, 1, 1, 2, 5, 15, 46, 58, 7, 0, 1, 1, 2, 5, 15, 52, 139, 121, 8, 0, 1, 1, 2, 5, 15, 52, 187, 410, 248, 9, 0, 1, 1, 2, 5, 15, 52, 203, 677, 1189, 503, 10, 0
Offset: 0
A(5,3) = 46 = 52 - 6 = A000110(5) - 6 counts all set partitions of [5] except: 1234|5, 15|234, 15|23|4, 15|24|3, 15|2|34, 15|2|3|4.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 2, 2, 2, 2, 2, 2, ...
0, 3, 5, 5, 5, 5, 5, 5, ...
0, 4, 12, 15, 15, 15, 15, 15, ...
0, 5, 27, 46, 52, 52, 52, 52, ...
0, 6, 58, 139, 187, 203, 203, 203, ...
0, 7, 121, 410, 677, 824, 877, 877, ...
-
b:= proc(n, k, l, t) option remember; `if`(n<1, 1, `if`(t-n>k, 0,
b(n-1, k, map(x-> `if`(x-n>=k, [][], x), [l[], n]), n)) +add(
b(n-1, k, sort(map(x-> `if`(x-n>=k, [][], x), subsop(j=n, l))),
`if`(t-n>k, infinity, t)), j=1..nops(l)))
end:
A:= (n, k)-> b(n, min(k, n-1), [], n):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_, l_, t_] := b[n, k, l, t] = If[n < 1, 1, If[t - n > k, 0, b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n], n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]], If[t - n > k, Infinity, t]], {j, 1, Length[l]}]];
A[n_, k_] := b[n, Min[k, n - 1], {}, n];
Table[A[n, d - n], {d, 0, 14}, { n, 0, d}] // Flatten (* Jean-François Alcover, May 24 2018, translated from Maple *)
A287640
Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 13, 1, 1, 41, 9, 1, 1, 131, 59, 11, 1, 1, 428, 344, 88, 15, 1, 1, 1429, 1906, 634, 146, 23, 1, 1, 4861, 10345, 4389, 1231, 280, 39, 1, 1, 16795, 55901, 30006, 9835, 2763, 602, 71, 1, 1, 58785, 303661, 205420, 77178, 25014, 6967, 1408, 135, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 1: 13|2|4.
T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5.
T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6.
T(6,4) = 1: 1345|2|6.
T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 13, 1;
1, 41, 9, 1;
1, 131, 59, 11, 1;
1, 428, 344, 88, 15, 1;
1, 1429, 1906, 634, 146, 23, 1;
1, 4861, 10345, 4389, 1231, 280, 39, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1,
[seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
end:
T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])):
seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12);
-
b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]];
T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]];
Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)
Showing 1-4 of 4 results.
Comments