cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290381 Number of minimal dominating sets in the n-web graph.

Original entry on oeis.org

22, 53, 146, 338, 995, 2661, 6961, 18770, 50161, 134426, 359126, 960419, 2570837, 6875493, 18392182, 49200125, 131613970, 352077098, 941809667, 2519398997, 6739522745, 18028532346, 48227208121, 129010104410, 345108392014, 923181669827, 2469555755813
Offset: 3

Views

Author

Eric W. Weisstein, Jul 28 2017

Keywords

Crossrefs

Formula

Empirical: a(n) = a(n-1)+2*a(n-2)+5*a(n-3) +4*a(n-4)+4*a(n-5)-8*a(n-6) for n>8. - Andrew Howroyd, Aug 01 2017
Empirical g.f.: x^3*(22 + 31*x + 49*x^2 - 24*x^3 + 12*x^4 - 40*x^5) / (1 - x - 2*x^2 - 5*x^3 - 4*x^4 - 4*x^5 + 8*x^6). - Colin Barker, Aug 01 2017

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 01 2017

A290591 Number of irredundant sets in the n-web graph.

Original entry on oeis.org

4, 22, 112, 618, 3044, 14026, 70340, 347074, 1713820, 8430362, 41516292, 204628626, 1008216460, 4967464650, 24473678612, 120581823170, 594106884060, 2927147525626, 14421969381220, 71056635221618, 350094259434668, 1724905262555178, 8498562511858612
Offset: 1

Views

Author

Eric W. Weisstein, Aug 07 2017

Keywords

Comments

The n-web graph is well defined for n >= 3. Sequence extended to n=1 via the number of period n periodic solutions on a larger graph. - Andrew Howroyd, Aug 07 2017

Crossrefs

Formula

From Andrew Howroyd, Aug 07 2017: (Start)
Empirical: a(n) = 4*a(n-1) + 3*a(n-2) + 4*a(n-3) + 22*a(n-4) + 12*a(n-5) - 164*a(n-6) + 80*a(n-7) - 24*a(n-8) + 80*a(n-9) for n > 9.
Empirical g.f.: 2*x*(2 + 3*x + 6*x^2 + 44*x^3 + 30*x^4 - 492*x^5 + 280*x^6 - 96*x^7 + 360*x^8)/(1 - 4*x - 3*x^2 - 4*x^3 - 22*x^4 - 12*x^5 + 164*x^6 - 80*x^7 + 24*x^8 - 80*x^9).
(End)

Extensions

a(1)-a(2) and terms a(8) and beyond from Andrew Howroyd, Aug 07 2017
Showing 1-2 of 2 results.