A287637 a(n) = A249125(n)/concatenation of prime factors of A249125(n).
2, 4, 3, 8, 5, 9, 16, 7, 2, 32, 27, 4, 11, 25, 64, 13, 8, 81, 10, 128, 17, 49, 19, 16, 20, 256, 23, 125, 243, 32, 29, 31, 40, 512, 50, 121, 37, 64, 41, 43, 80, 1024, 729, 169, 47, 343, 100, 53, 625, 128, 59, 61, 160, 2048, 67, 289, 200, 71, 73, 79, 250, 256
Offset: 1
Examples
a(9)=2 because A249125(9) = 50 and the concatenation of the prime factors of 50 is 25. Hence, 50/25 = 2.
Programs
-
Maple
with(numtheory): for n from 2 to 10000 do: if type(n,prime)=false then x:=factorset(n):n0:=nops(x): d:=sum('length(x[i])', 'i'=1..n0): l:=sum('x[i]*10^sum('length(x[j])', 'j'=i+1..n0)', 'i'=1..n0): z:=n/l: if floor(z)=z then printf(`%d, `,z): else fi: fi: od:
-
Mathematica
cf[n_] := FromDigits@ Flatten[ IntegerDigits /@ First /@ FactorInteger@n]; Reap[ Do[If[ CompositeQ[n] && IntegerQ[rz = n/cf[n]], Sow[rz]], {n, 6400}]][[2, 1]] (* Giovanni Resta, May 29 2017 *)
Comments