A287640 Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows.
1, 1, 1, 1, 1, 4, 1, 13, 1, 1, 41, 9, 1, 1, 131, 59, 11, 1, 1, 428, 344, 88, 15, 1, 1, 1429, 1906, 634, 146, 23, 1, 1, 4861, 10345, 4389, 1231, 280, 39, 1, 1, 16795, 55901, 30006, 9835, 2763, 602, 71, 1, 1, 58785, 303661, 205420, 77178, 25014, 6967, 1408, 135, 1
Offset: 0
Examples
T(4,0) = 1: 1234. T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. T(4,2) = 1: 13|2|4. T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5. T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6. T(6,4) = 1: 1345|2|6. T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7. Triangle T(n,k) begins: 1; 1; 1, 1; 1, 4; 1, 13, 1; 1, 41, 9, 1; 1, 131, 59, 11, 1; 1, 428, 344, 88, 15, 1; 1, 1429, 1906, 634, 146, 23, 1; 1, 4861, 10345, 4389, 1231, 280, 39, 1; ...
Links
- Alois P. Heinz, Rows n = 0..20, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1, [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1)) end: T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])): seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]]; T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]]; Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* Jean-François Alcover, May 22 2018, translated from Maple *)