A287651 Number of reduced pairs of orthogonal diagonal Latin squares of order n.
1, 0, 0, 2, 4, 0, 320, 1322496, 339930624
Offset: 1
Links
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, continuation (in Russian)
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, V. S. Titov, Combinatorial characteristics estimating for pairs of orthogonal diagonal Latin squares, Multicore processors, parallel programming, FPGA, signal processing systems (2017), pp. 104-111 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Index entries for sequences related to Latin squares and rectangles
Formula
a(n) = A339926(n) / (n!)^2. - Eduard I. Vatutin, Dec 24 2020
Extensions
a(8) added by Eduard I. Vatutin, Jan 02 2018
a(9) added by Eduard I. Vatutin, Dec 22 2020
Comments