cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A288120 Number of partitions of n into distinct pentanacci numbers (with a single type of 1) (A001591).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Comments

The first occurrences of 1, 2, 3, 4, 5, ... are at n=0, 31, 912, 1824, 26815, ... - Antti Karttunen, Dec 22 2017

Examples

			a(31) = 2 because we have [31] and [16, 8, 4, 2, 1].
		

Crossrefs

Programs

  • PARI
    A001591(n) = { if(n<=3,return(0)); my(p0=0,p1=0,p2=0,p3=1,p4=1,old_p0); while(n>5,n--;old_p0=p0;p0=p1;p1=p2;p2=p3;p3=p4;p4=old_p0+p0+p1+p2+p3;); p4; }
    v288120nthgen(up_to) = { my(k=6,fk,vec = [1],vec2); while(k<=up_to, fk = A001591(k); k++; vec2 = vector(length(vec)+fk,i,(i==fk)+if(i>fk,vec[i-fk],0)+if(i<=length(vec),vec[i],0)); vec = vec2); vector(fk,i,vec[i]); }
    write_to_bfile_with_a0_as_given(a0,vec,bfilename) = { write(bfilename, 0, " ", a0); for(n=1, length(vec), write(bfilename, n, " ", vec[n])); }
    write_to_bfile_with_a0_as_given(1,v288120nthgen(21),"b288120.txt"); \\ Antti Karttunen, Dec 22 2017
    
  • Scheme
    (define (A288120 n) (let ((s (list 0))) (let fork ((r n) (i 5)) (cond ((zero? r) (set-car! s (+ 1 (car s)))) ((> (A001591 i) r) #f) (else (begin (fork (- r (A001591 i)) (+ 1 i)) (fork r (+ 1 i)))))) (car s)))
    ;; This one uses memoization-macro definec
    (definec (A001591 n) (cond ((<= n 3) 0) ((= 4 n) 1) (else (+ (A001591 (- n 1)) (A001591 (- n 2)) (A001591 (- n 3)) (A001591 (- n 4)) (A001591 (- n 5))))))
    ;; Antti Karttunen, Dec 22 2017

Formula

G.f.: Product_{k>=5} (1 + x^A001591(k)).

Extensions

More terms from Antti Karttunen, Dec 22 2017

A357453 Number of compositions (ordered partitions) of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 31, 56, 98, 174, 306, 542, 956, 1690, 2984, 5273, 9313, 16453, 29062, 51340, 90689, 160203, 282994, 499908, 883078, 1559948, 2755624, 4867776, 8598858, 15189770, 26832521, 47399291, 83730207, 147908288, 261277998, 461544073
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2022

Keywords

Crossrefs

Programs

Formula

G.f.: 1 / (1 - Sum_{k>=4} x^A000078(k)).

A357452 Number of partitions of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 27, 36, 37, 46, 48, 60, 62, 74, 78, 94, 98, 114, 120, 140, 147, 168, 178, 204, 215, 242, 256, 288, 304, 338, 358, 398, 420, 462, 488, 537, 567, 619, 654, 714, 753, 816, 860, 932, 982, 1058, 1114
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2022

Keywords

Crossrefs

Programs

Formula

G.f.: Product_{k>=4} 1 / (1 - x^A000078(k)).

A359631 a(n) is the smallest positive integer which can be represented as the sum of distinct positive Fibonacci n-step numbers (with a single type of 1) in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 3, 44, 416, 26815, 464031
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 08 2023

Keywords

Examples

			For n = 2: 3 = Fibonacci(4) = 3 = Fibonacci(2) + Fibonacci(3) = 1 + 2.
		

Crossrefs

Showing 1-4 of 4 results.