A287689 Number of (non-null) connected induced subgraphs in the n-triangular graph.
1, 7, 60, 968, 31737, 2069963, 267270032, 68629753640, 35171000942697, 36024807353574279, 73784587576805254652, 302228602363365451957792, 2475873310144021668263093201, 40564787336902311168400640561083, 1329227697997490307154018925966130304
Offset: 2
Keywords
Examples
From _Gus Wiseman_, Sep 11 2019: (Start) The a(4) = 60 edge-sets: {12} {12,13} {12,13,14} {12,13,14,23} {12,13,14,23,24} {13} {12,14} {12,13,23} {12,13,14,24} {12,13,14,23,34} {14} {12,23} {12,13,24} {12,13,14,34} {12,13,14,24,34} {23} {12,24} {12,13,34} {12,13,23,24} {12,13,23,24,34} {24} {13,14} {12,14,23} {12,13,23,34} {12,14,23,24,34} {34} {13,23} {12,14,24} {12,13,24,34} {13,14,23,24,34} {13,34} {12,14,34} {12,14,23,24} {14,24} {12,23,24} {12,14,23,34} {14,34} {12,23,34} {12,14,24,34} {23,24} {12,24,34} {12,23,24,34} {23,34} {13,14,23} {13,14,23,24} {24,34} {13,14,24} {13,14,23,34} {13,14,34} {13,14,24,34} {13,23,24} {13,23,24,34} {13,23,34} {14,23,24,34} {13,24,34} {14,23,24} {14,23,34} {14,24,34} {12,13,14,23,24,34} {23,24,34} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..50
- Eric Weisstein's World of Mathematics, Triangular Graph
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
Crossrefs
Programs
-
Mathematica
Table[With[{g = GraphData[{"Triangular", n}]}, Total[Boole[ConnectedGraphQ[Subgraph[g, #]] & /@ Subsets[VertexList[g]]]]], {n, 2, 5}] - 1 (* Second program: *) g[n_] := g[n] = If[n==0, 1, 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k) * (n-k-1)/2)*g[k], {k, 1, n-1}]/n]; a[n_] := Sum[Binomial[n, i]*g[i], {i, 2, n}]; Table[a[n], {n, 2, 16}] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
-
PARI
seq(n)={Vec(serlaplace(exp(x + O(x*x^n))*(-x+log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Sep 11 2019
Formula
a(n) = Sum_{i=2..n} binomial(n,i) * A001187(i). - Andrew Howroyd, Jun 07 2017
E.g.f.: exp(x)*(-x + log(Sum_{k>=0} 2^binomial(k, 2)*x^k/k!)). - Andrew Howroyd, Sep 11 2019
Extensions
Terms a(9) and beyond from Andrew Howroyd, Jun 07 2017
Comments