cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287689 Number of (non-null) connected induced subgraphs in the n-triangular graph.

Original entry on oeis.org

1, 7, 60, 968, 31737, 2069963, 267270032, 68629753640, 35171000942697, 36024807353574279, 73784587576805254652, 302228602363365451957792, 2475873310144021668263093201, 40564787336902311168400640561083, 1329227697997490307154018925966130304
Offset: 2

Views

Author

Eric W. Weisstein, May 29 2017

Keywords

Comments

Also the number of labeled simple graphs with n vertices whose edge-set is connected. - Gus Wiseman, Sep 11 2019

Examples

			From _Gus Wiseman_, Sep 11 2019: (Start)
The a(4) = 60 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}
  {13}  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {14}  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {23}  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {24}  {13,14}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {34}  {13,23}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
        {13,34}  {12,14,34}  {12,14,23,24}
        {14,24}  {12,23,24}  {12,14,23,34}
        {14,34}  {12,23,34}  {12,14,24,34}
        {23,24}  {12,24,34}  {12,23,24,34}
        {23,34}  {13,14,23}  {13,14,23,24}
        {24,34}  {13,14,24}  {13,14,23,34}
                 {13,14,34}  {13,14,24,34}
                 {13,23,24}  {13,23,24,34}
                 {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}             {12,13,14,23,24,34}
                 {23,24,34}
(End)
		

Crossrefs

The unlabeled version is A292300.

Programs

  • Mathematica
    Table[With[{g = GraphData[{"Triangular", n}]}, Total[Boole[ConnectedGraphQ[Subgraph[g, #]] & /@ Subsets[VertexList[g]]]]], {n, 2, 5}] - 1
    (* Second program: *)
    g[n_] := g[n] = If[n==0, 1, 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k) * (n-k-1)/2)*g[k], {k, 1, n-1}]/n]; a[n_] := Sum[Binomial[n, i]*g[i], {i, 2, n}]; Table[a[n], {n, 2, 16}] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(exp(x + O(x*x^n))*(-x+log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = Sum_{i=2..n} binomial(n,i) * A001187(i). - Andrew Howroyd, Jun 07 2017
E.g.f.: exp(x)*(-x + log(Sum_{k>=0} 2^binomial(k, 2)*x^k/k!)). - Andrew Howroyd, Sep 11 2019
a(n) = A006125(n) - A327199(n). - Gus Wiseman, Sep 11 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jun 07 2017