A287702 a(n) = (3!)^3 * [z^3] hypergeom([], [1,1], z)^n.
0, 1, 56, 381, 1192, 2705, 5136, 8701, 13616, 20097, 28360, 38621, 51096, 66001, 83552, 103965, 127456, 154241, 184536, 218557, 256520, 298641, 345136, 396221, 452112, 513025, 579176, 650781, 728056, 811217, 900480, 996061, 1098176, 1207041, 1322872, 1445885
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Column 3 of A287698.
Programs
-
Maple
a := n -> 46*n - 81*n^2 + 36*n^3: seq(a(n), n=0..35);
-
Mathematica
Table[46 n - 81 n^2 + 36 n^3, {n, 0, 40}] (* Bruno Berselli, Jun 06 2017 *) LinearRecurrence[{4,-6,4,-1},{0,1,56,381},40] (* Harvey P. Dale, Aug 20 2017 *)
Formula
O.g.f.: x*(1 + 52*x + 163*x^2) / (1 - x)^4.
a(n) = 46*n - 81*n^2 + 36*n^3.
a(n) = [x^n] (x + 52*x^2 + 163*x^3) / (1 - x)^4.