cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287704 Triangle read by rows, denominators of T(n,k) = (-1)^(n+k)*binomial(n-1,k)* Bernoulli(n+k)/ (n+k) for n>=1, 0<=k<=n-1.

Original entry on oeis.org

2, 12, 1, 1, 60, 1, 120, 1, 84, 1, 1, 63, 1, 60, 1, 252, 1, 24, 1, 132, 1, 1, 40, 1, 33, 1, 5460, 1, 240, 1, 44, 1, 936, 1, 12, 1, 1, 33, 1, 585, 1, 3, 1, 1020, 1, 132, 1, 910, 1, 2, 1, 680, 1, 1596, 1, 1, 3276, 1, 1, 1, 680, 1, 1197, 1, 660, 1
Offset: 1

Views

Author

Peter Luschny, Jun 21 2017

Keywords

Examples

			1:   2
2:  12,  1
3:   1, 60, 1
4: 120,  1, 84,   1
5:   1, 63,  1,  60,   1
6: 252,  1, 24,   1, 132,    1
7:   1, 40,  1,  33,   1, 5460,  1
8: 240,  1, 44,   1, 936,    1, 12,    1
9:   1, 33,  1, 585,   1,    3,  1, 1020, 1
		

Crossrefs

Numerators in A287703.

Programs

  • Maple
    T := (n, k) -> denom((-1)^(n+k)*binomial(n-1, k)*bernoulli(n+k)/(n+k)):
    for n from 1 to 9 do seq(T(n, k), k=0..n-1) od;
  • Mathematica
    T[n_, k_]:=Denominator[(-1)^n*Binomial[n - 1, k] BernoulliB[k + n]/(k + n)]; Table[T[n, k], {n, 11}, {k, 0, n - 1}]//Flatten (* Indranil Ghosh, Jul 27 2017 *)
  • PARI
    T(n, k) = denominator((-1)^n*binomial(n-1,k)*bernfrac(k+n)/(k+n));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017