A287768 Irregular triangle read by rows: mean version of Girard-Waring formula A210258, for m = 3 data values.
1, 3, -2, 9, -9, 1, 27, -36, 4, 6, 81, -135, 15, 45, -5, 243, -486, 54, 243, -36, -18, 1, 729, -1701, 189, 1134, -189, -189, 7, 21, 2187, -5832, 648, 4860, -864, -1296, 36, 216, 54, -8, 6561, -19683, 2187, 19683, -3645, -7290, 162, 1458, 729, -81, -81, 1, 19683, -65610, 7290, 76545, -14580, -36450, 675, 8100, 6075, -540, -1080, 10, -162, 45
Offset: 1
Examples
Triangle begins: 1; 3, -2; 9, -9, 1; 27, -36, 4, 6; 81, -135, 15, 45, -5; 243, -486, 54, 243, -36, -18, 1; ... The first few rows describe: Row 1: SM_1 = 1 eM_1; Row 2: SM_2 = 3*(eM_1)^2 - 2*eM_2; Row 3: SM_3 = 9*(eM_1)^3 - 9*eM_1*eM_2 + 1*eM_3; Row 4: SM_4 = 27*(eM_1)^4 - 36*(eM_1)^2*eM_2 + 4*eM_1*eM_3 + 6*(eM_2)^2; Row 5: SM_5 = 81*(eM_1)^5 - 135*(eM_1)^3*eM_2 + 15*(eM_1)^2*eM_3 + 45*eM_1*(eM_2)^2 - 5*eM_2*eM_3.
Links
- Gregory Gerard Wojnar, Java program
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, Table GW.n=3, p.22, arXiv:1706.08381 [math.GM], 2017.
Crossrefs
Row sums of the positive terms appears to be A195350.
First entries of row n is A000244(n).
Second entries of row n, for n>1, is given by -n*3^(n-2).
Third entries of row n, for n>2, is given by n*3^(n-4), A006234.
Fourth entries of row n, for n>3, is given by n*(n-3)*3^(n-3)/2!.
Fifth entries of row n, for n>4, is given by -n*(n-4)*3^(n-5)/1!.
Corresponding sequences for different sized data multisets are: A028297 (m=2), A288199 (m=4), A288207 (m=5), A288211 (m=6), A288245 (m=7), A288188 (m=8).
Cf. A210258.
Programs
-
Java
// See Wojnar link.
Comments