A371705 Number of Dyck paths of semilength n such that neighboring peaks have different heights.
1, 1, 1, 3, 6, 16, 43, 116, 329, 947, 2762, 8176, 24469, 73896, 224960, 689623, 2126947, 6595273, 20548732, 64298032, 201969823, 636639087, 2013174695, 6384574754, 20302081620, 64716553655, 206764068578, 661983640080, 2123573339921, 6824597707820, 21969711674581
Offset: 0
Keywords
Examples
a(3) = 3: /\ / \ /\ /\ / \ / \/\ /\/ \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..555
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(x, y, h, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, b(x-1, y+1, h, 1)+ `if`(t=0 or y<>h, b(x-1, y-1, `if`(t=1, y, h), 0), 0))) end: a:= n-> b(2*n, 0$3): seq(a(n), n=0..30);
Comments