A287800 Numbers n such that phi(n) * tau(n) divides n^2, but neither tau(n) nor phi(n) divides n.
900, 2400, 3840, 6480, 7200, 11520, 13056, 39168, 42240, 79200, 83232, 96000, 126720, 145200, 153600, 157440, 174240, 195840, 207360, 288000, 300000, 317520, 326592, 387840, 435600, 460800, 472320, 480000, 900000, 971520, 1056000, 1161600, 1163520, 1228800, 1440000
Offset: 1
Keywords
Examples
For n = 900, tau(900) = 27, phi(900) = 240 and 900^2/(27 * 240) = 125, but 900/27 = 33.33333 and 900/240 = 3.75.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..780 (terms below 10^10)
Programs
-
Magma
[k:k in [1..1500000]| k^2 mod (EulerPhi(k) *NumberOfDivisors(k)) eq 0 and (k mod EulerPhi(k) ne 0) and (k mod NumberOfDivisors(k) ne 0)]; // Marius A. Burtea, Dec 30 2019
-
Maple
for n from 1 to 100000 do p(n):=n^2/(tau(n)*phi(n)); if p(n)=floor(p(n)) and n/tau(n)<>floor(n/tau(n)) and n/phi(n)<>floor(n/phi(n)) then print(n,p(n),phi(n),tau(n)) else fi; od:
-
Mathematica
Select[Range[10^6], Function[n, And[Divisible[n^2, #1 #2], NoneTrue[{#1, #2}, Divisible[n, #] &]] & @@ {DivisorSigma[0, n], EulerPhi[n]}]] (* Michael De Vlieger, Jun 01 2017 *)
-
PARI
is(n) = n^2 % (numdiv(n)*eulerphi(n)) == 0 && n % numdiv(n) != 0 && n % eulerphi(n) % n!=0 \\ David A. Corneth, Jun 01 2017
Comments