cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287800 Numbers n such that phi(n) * tau(n) divides n^2, but neither tau(n) nor phi(n) divides n.

Original entry on oeis.org

900, 2400, 3840, 6480, 7200, 11520, 13056, 39168, 42240, 79200, 83232, 96000, 126720, 145200, 153600, 157440, 174240, 195840, 207360, 288000, 300000, 317520, 326592, 387840, 435600, 460800, 472320, 480000, 900000, 971520, 1056000, 1161600, 1163520, 1228800, 1440000
Offset: 1

Views

Author

Bernard Schott, Jun 01 2017

Keywords

Comments

The GCD of the first 43 terms is 12. The GCD of the first 166 terms is 4. The GCD of a(2) through a(166) is 16. - David A. Corneth, Jun 01 2017

Examples

			For n = 900, tau(900) = 27, phi(900) = 240 and 900^2/(27 * 240) = 125, but 900/27 = 33.33333 and 900/240 = 3.75.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..1500000]| k^2 mod (EulerPhi(k) *NumberOfDivisors(k)) eq 0 and (k mod  EulerPhi(k) ne 0) and (k mod NumberOfDivisors(k) ne 0)]; // Marius A. Burtea, Dec 30 2019
  • Maple
    for n from 1 to 100000 do p(n):=n^2/(tau(n)*phi(n));
    if p(n)=floor(p(n)) and n/tau(n)<>floor(n/tau(n)) and n/phi(n)<>floor(n/phi(n)) then print(n,p(n),phi(n),tau(n)) else fi; od:
  • Mathematica
    Select[Range[10^6], Function[n, And[Divisible[n^2, #1 #2], NoneTrue[{#1, #2}, Divisible[n, #] &]] & @@ {DivisorSigma[0, n], EulerPhi[n]}]] (* Michael De Vlieger, Jun 01 2017 *)
  • PARI
    is(n) = n^2 % (numdiv(n)*eulerphi(n)) == 0 && n % numdiv(n) != 0 && n % eulerphi(n) % n!=0 \\ David A. Corneth, Jun 01 2017