A287819
Number of nonary sequences of length n such that no two consecutive terms have distance 4.
Original entry on oeis.org
1, 9, 71, 561, 4433, 35031, 276827, 2187585, 17287073, 136608591, 1079529611, 8530826457, 67413620993, 532726379847, 4209793089371, 33267280400913, 262889866978817, 2077449112980255, 16416740845208075, 129730917736941417, 1025179795159015841
Offset: 0
For n=2 the a(2) = 81 - 10 = 71 sequences contain every combination except these ten: 04,40,15,51,26,62,37,73,48,84.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{8, 1, -14}, {1, 9, 71, 561}, 40]
-
def a(n):
if n in [0, 1, 2, 3]:
return [1, 9, 71, 561][n]
return 8*a(n-1)+a(n-2)-14*a(n-3)
A287825
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 1.
Original entry on oeis.org
1, 10, 82, 674, 5540, 45538, 374316, 3076828, 25291120, 207889674, 1708825732, 14046322404, 115458919774, 949057110644, 7801124426174, 64124215108032, 527092600834054, 4332631742719370, 35613662169258228, 292739611493034596, 2406281042646218328
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, -4, -21, 9, 5}, {1, 10, 82, 674, 5540, 45538}, 40]
-
def a(n):
if n in [0, 1, 2, 3, 4, 5]:
return [1, 10, 82, 674, 5540, 45538][n]
return 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5)
A287839
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 9.
Original entry on oeis.org
1, 11, 117, 1247, 13289, 141619, 1509213, 16083463, 171399121, 1826575451, 19465548357, 207441511727, 2210673955769, 23558830139779, 251063019088173, 2675542001860183, 28512861152219041, 303857405535211691, 3238164083417650197, 34508642672922983807
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 11 elif n=2 then 117 else 10*a(n-1)+7*a(n-2); fi; end: seq(a(n), n=0..30); # Wesley Ivan Hurt, Nov 25 2017
-
LinearRecurrence[{10, 7}, {1, 11, 117}, 20]
-
Vec((1 + x) / (1 - 10*x - 7*x^2) + O(x^30)) \\ Colin Barker, Nov 25 2017
-
def a(n):
if n in [0,1,2]:
return [1, 11, 117][n]
return 10*a(n-1) + 7*a(n-2)
A287831
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 8.
Original entry on oeis.org
1, 10, 96, 924, 8892, 85572, 823500, 7924932, 76265388, 733938084, 7063035084, 67970944260, 654116708844, 6294876045156, 60578584659468, 582976518206148, 5610260171812140, 53990200655546148, 519573366930788172, 5000101506310370436, 48118353758378062956
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 6}, {1, 10}, 30]
-
def a(n):
if n in [0, 1]:
return [1, 10][n]
return 9*a(n-1)+6*a(n-2)
A287811
Number of septenary sequences of length n such that no two consecutive terms have distance 5.
Original entry on oeis.org
1, 7, 45, 291, 1881, 12159, 78597, 508059, 3284145, 21229047, 137226717, 887047443, 5733964809, 37064931183, 239591481525, 1548743682699, 10011236540769, 64713650292711, 418315611378573, 2704034619149571, 17479154549033145, 112987031151647583
Offset: 0
For n=2 the a(2) = 49-4 = 45 sequences contain every combination except these four: 05, 50, 16, 61.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
-
LinearRecurrence[{6, 3}, {1,7}, 40]
-
def a(n):
if n in [0, 1]:
return [1, 7][n]
return 6*a(n-1)-3*a(n-2)
A287838
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 8.
Original entry on oeis.org
1, 11, 115, 1205, 12625, 132275, 1385875, 14520125, 152130625, 1593906875, 16699721875, 174966753125, 1833166140625, 19206495171875, 201230782421875, 2108340300078125, 22089556912890625, 231437270629296875, 2424820490857421875, 25405391261720703125
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
LinearRecurrence[{10, 5}, {1, 11, 115}, 20]
-
Vec((1 + x) / (1 - 10*x - 5*x^2) + O(x^40)) \\ Colin Barker, Nov 25 2017
-
def a(n):
if n in [0,1,2]:
return [1, 11, 115][n]
return 10*a(n-1) + 5*a(n-2)
A287805
Number of quinary sequences of length n such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 5, 19, 73, 281, 1083, 4175, 16097, 62065, 239307, 922711, 3557761, 13717913, 52893147, 203943935, 786361409, 3032030689, 11690820555, 45077144455, 173807214241, 670161078089, 2583988659867, 9963272432111, 38416111919777, 148123788152017, 571131629935179
Offset: 0
For n=2 the a(2)=19=25-6 sequences contain every combination except these six: 02,20,13,31,24,42.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{4, 1, -6}, {1, 5, 19, 73}, 40]
-
def a(n):
if n in [0,1,2,3]:
return [1,5,19,73][n]
return 4*a(n-1)+a(n-2)-6*a(n-3)
A287806
Number of senary sequences of length n such that no two consecutive terms have distance 1.
Original entry on oeis.org
1, 6, 26, 114, 500, 2194, 9628, 42252, 185422, 813722, 3571010, 15671340, 68773514, 301811860, 1324498252, 5812546998, 25508302906, 111942925778, 491260382084, 2155891150146, 9461106209228, 41519967599596, 182209952129086, 799626506818554, 3509152727035810
Offset: 0
For n=2 the a(2)=26=36-10 sequences contain every combination except these ten: 01,10,12,21,23,32,34,43,45,54.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{5, -2, -3}, {1, 6, 26, 114}, 40]
-
def a(n):
if n in [0, 1, 2, 3]:
return [1, 6, 26, 114][n]
return 5*a(n-1)-2*a(n-2)-3*a(n-3)
A287807
Number of senary sequences of length n such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 6, 28, 132, 624, 2952, 13968, 66096, 312768, 1480032, 7003584, 33141312, 156826368, 742110336, 3511703808, 16617560832, 78635142144, 372105487872, 1760822074368, 8332299518976, 39428864667648, 186579390892032, 882903157346304, 4177942598725632
Offset: 0
For n=2 the a(2)=28=36-8 sequences contain every combination except these eight: 02,20,13,31,24,42,35,53.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{6, -6}, {1, 6, 28}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 6, 28][n]
return 6*a(n-1)-6*a(n-2)
A287808
Number of septenary sequences of length n such that no two consecutive terms have distance 1.
Original entry on oeis.org
1, 7, 37, 197, 1049, 5587, 29757, 158491, 844153, 4496123, 23947233, 127547675, 679344041, 3618320227, 19271886609, 102645866251, 546712113769, 2911896468083, 15509334488577, 82605772190267, 439974623297369, 2343391557436483, 12481365289466289
Offset: 0
For n=2 the a(2)=37=49-12 sequences contain every combination except these twelve: 01,10,12,21,23,32,34,43,45,54,56,65.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{7, -8, -6, 6}, {1, 7, 37, 197, 1049}, 40]
-
def a(n):
if n in [0,1,2,3,4]:
return [1, 7, 37, 197, 1049][n]
return 7*a(n-1)-8*a(n-2)-6*a(n-3)+6*a(n-4)
Showing 1-10 of 30 results.
Comments