A287846 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly one peak.
1, 1, 0, 2, 0, 4, 6, 8, 24, 52, 96, 212, 504, 1072, 2352, 5288, 11928, 26800, 60336, 136304, 308928, 701248, 1593120, 3622016, 8245008, 18787360, 42836928, 97724384, 223052784, 509338816, 1163512032, 2658731648, 6077117376, 13893874624, 31771515648
Offset: 0
Keywords
Examples
. a(1) = 1: /\ . . . a(3) = 2: /\ /\ . /\/ \ / \/\ . . . a(5) = 4: . /\ /\ /\ /\ . /\/ \ / \/\ /\/ \ / \/\ . /\/ \ /\/ \ / \/\ / \/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 15.
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add( b(n-j, i)*binomial(j-1, i-2)*i, i=1..min(j+2, n-j))) end: a:= n-> b(n, 1): seq(a(n), n=0..35);
-
Mathematica
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*Binomial[j - 1, i - 2]*i, {i, 1, Min[j + 2, n - j]}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
Comments