cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287846 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly one peak.

Original entry on oeis.org

1, 1, 0, 2, 0, 4, 6, 8, 24, 52, 96, 212, 504, 1072, 2352, 5288, 11928, 26800, 60336, 136304, 308928, 701248, 1593120, 3622016, 8245008, 18787360, 42836928, 97724384, 223052784, 509338816, 1163512032, 2658731648, 6077117376, 13893874624, 31771515648
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Comments

All terms with n > 1 are even.

Examples

			. a(1) = 1:    /\  .
.
. a(3) = 2:     /\       /\
.            /\/  \     /  \/\  .
.
. a(5) = 4:
.                /\       /\         /\       /\
.             /\/  \     /  \/\   /\/  \     /  \/\
.          /\/      \ /\/      \ /      \/\ /      \/\ .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add(
           b(n-j, i)*binomial(j-1, i-2)*i, i=1..min(j+2, n-j)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*Binomial[j - 1, i - 2]*i, {i, 1, Min[j + 2, n - j]}]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 23 2018, translated from Maple *)