cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287899 Number of permutations of [2n] with exactly n cycles such that the elements of each cycle form an integer interval.

Original entry on oeis.org

1, 1, 5, 31, 217, 1661, 13721, 121703, 1157857, 11826121, 129877645, 1535504015, 19546846441, 267633414517, 3932330905361, 61806788736551, 1035452546213441, 18421374554192017, 346790652640704725, 6885640002624595007, 143771244649798115257
Offset: 0

Views

Author

Alois P. Heinz, Jun 02 2017

Keywords

Comments

All terms are odd.

Examples

			a(2) = 5: (1)(2,3,4), (1)(2,4,3), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4).
		

Crossrefs

Cf. A084938, A088218 (analog for set partitions).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
           add(b(n-j, i-1)*j!, j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2]*x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2017 *)
    Table[SeriesCoefficient[Sum[k!*x^k, {k, 0, n}]^n, {x,0,n}], {n,0,25}] (* Vaclav Kotesovec, Aug 10 2019 *)

Formula

a(n) = A084938(2n,n).
a(n) = [x^n] (1/(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...))))))))^n, a continued fraction. - Ilya Gutkovskiy, Sep 29 2017
a(n) ~ exp(1) * n * n!. - Vaclav Kotesovec, Sep 29 2017