A287899 Number of permutations of [2n] with exactly n cycles such that the elements of each cycle form an integer interval.
1, 1, 5, 31, 217, 1661, 13721, 121703, 1157857, 11826121, 129877645, 1535504015, 19546846441, 267633414517, 3932330905361, 61806788736551, 1035452546213441, 18421374554192017, 346790652640704725, 6885640002624595007, 143771244649798115257
Offset: 0
Keywords
Examples
a(2) = 5: (1)(2,3,4), (1)(2,4,3), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..448
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!, add(b(n-j, i-1)*j!, j=0..n)) end: a:= n-> b(n$2): seq(a(n), n=0..25);
-
Mathematica
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2]*x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2017 *) Table[SeriesCoefficient[Sum[k!*x^k, {k, 0, n}]^n, {x,0,n}], {n,0,25}] (* Vaclav Kotesovec, Aug 10 2019 *)
Formula
a(n) = A084938(2n,n).
a(n) = [x^n] (1/(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...))))))))^n, a continued fraction. - Ilya Gutkovskiy, Sep 29 2017
a(n) ~ exp(1) * n * n!. - Vaclav Kotesovec, Sep 29 2017
Comments