cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287934 Composite numbers n such that E(n+1)+1 is divisible by n, where E(n) is the n-th Euler number (A122045).

Original entry on oeis.org

289, 341, 561, 1105, 1369, 1387, 1729, 2465, 2821, 4097, 5365, 6179, 6601, 8911, 9105, 9537, 10585, 12673, 14433, 14531, 15457, 15841, 28033, 29341, 33901, 41041, 41905, 42141, 46657, 48705, 52633, 52741, 62745, 63253, 63973, 75361, 80185, 82621, 99937
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2017

Keywords

Comments

Kummer proved in 1851 that E(2k + p - 1) == E(2k) (mod p) for k > 0 and all odd primes p. This sequence consists of composite numbers for which the congruence, with k=1, also holds. In terms of A000364, the sequence consists of composite odd numbers n that divide A000364((n + 1)/2) + (-1)^((n + 1)/2).

References

  • Jozsef Sandor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 5, p. 556.

Crossrefs

Programs

  • Mathematica
    a={}; For[n = 1, n < 100000, n++; If[!PrimeQ[n] && Divisible[EulerE[n + 1] + 1, n], a=AppendTo[a,n]]];a
    Select[Range[100000],CompositeQ[#]&&Divisible[EulerE[#+1]+1,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 03 2019 *)
  • PARI
    e(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1);
    isok(n) = (((e(n+1)+1) % n) == 0);
    lista(nn) = forcomposite(n=1, nn, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Jun 10 2017