cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287963 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has one or two peaks.

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 28, 71, 194, 532, 1495, 4256, 12176, 35251, 102664, 300260, 881909, 2599948, 7688164, 22788527, 67676144, 201308938, 599676445, 1788564038, 5339905904, 15956230705, 47713265536, 142763240666, 427390085963, 1280058256294, 3835332884686
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2017

Keywords

Examples

			. a(3) = 2:     /\      /\
.            /\/  \    /  \/\  .
.
. a(4) = 5:      /\      /\        /\/\    /\        /\/\
.           /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /    \/\ .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j) option remember; `if`(n=j, 1, add(
           b(n-j, i)*i*(binomial(j-1, i-2) +(i-1)/2*
           binomial(j-1, i-3)), i=2..min(j+3, n-j)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j, 1, Sum[b[n - j, i]*i*(Binomial[j - 1, i - 2] + (i - 1)/2*Binomial[j - 1, i - 3]), {i, 2, Min[j + 3, n - j]}]];
    a[n_] := If[n == 0, 1, b[n, 1] + b[n, 2]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 29 2018, from Maple *)