A287963 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has one or two peaks.
1, 1, 1, 2, 5, 10, 28, 71, 194, 532, 1495, 4256, 12176, 35251, 102664, 300260, 881909, 2599948, 7688164, 22788527, 67676144, 201308938, 599676445, 1788564038, 5339905904, 15956230705, 47713265536, 142763240666, 427390085963, 1280058256294, 3835332884686
Offset: 0
Keywords
Examples
. a(3) = 2: /\ /\ . /\/ \ / \/\ . . . a(4) = 5: /\ /\ /\/\ /\ /\/\ . /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, j) option remember; `if`(n=j, 1, add( b(n-j, i)*i*(binomial(j-1, i-2) +(i-1)/2* binomial(j-1, i-3)), i=2..min(j+3, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)): seq(a(n), n=0..35);
-
Mathematica
b[n_, j_] := b[n, j] = If[n == j, 1, Sum[b[n - j, i]*i*(Binomial[j - 1, i - 2] + (i - 1)/2*Binomial[j - 1, i - 3]), {i, 2, Min[j + 3, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 1] + b[n, 2]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 29 2018, from Maple *)