cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287987 Number of Dyck paths of semilength n such that all positive levels have the same number of peaks.

Original entry on oeis.org

1, 1, 1, 3, 1, 8, 13, 13, 54, 132, 280, 547, 1219, 3904, 11107, 25082, 53777, 137751, 419831, 1257599, 3453557, 8911341, 22636845, 59890162, 172264224, 529706648, 1630328686, 4765347773, 13125989799, 35253234315, 97531470556, 287880507391, 894915519516
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2017

Keywords

Examples

			. a(3) = 3:                         /\        /\
.                    /\/\/\      /\/  \      /  \/\  .
.
. a(5) = 8:
.                       /\/\      /\/\      /\/\
.      /\/\/\/\/\  /\/\/    \  /\/    \/\  /    \/\/\
.
.            /\        /\          /\        /\
.         /\/  \      /  \/\    /\/  \      /  \/\
.      /\/      \  /\/      \  /      \/\  /      \/\  .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1,
           add(binomial(i, k)*binomial(j-1, i-1-k)
             *b(n-j, k, i), i=1+k..min(j+k, n-j)))
        end:
    a:= n-> 1+add(b(n, j$2), j=1..n/2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Binomial[i, k]*Binomial[j - 1, i - 1 - k]*b[n - j, k, i], {i, 1 + k, Min[j + k, n - j]}]];
    a[n_] := 1 + Sum[b[n, j, j], {j, 1, n/2}];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 24 2018, translated from Maple *)