A287987 Number of Dyck paths of semilength n such that all positive levels have the same number of peaks.
1, 1, 1, 3, 1, 8, 13, 13, 54, 132, 280, 547, 1219, 3904, 11107, 25082, 53777, 137751, 419831, 1257599, 3453557, 8911341, 22636845, 59890162, 172264224, 529706648, 1630328686, 4765347773, 13125989799, 35253234315, 97531470556, 287880507391, 894915519516
Offset: 0
Keywords
Examples
. a(3) = 3: /\ /\ . /\/\/\ /\/ \ / \/\ . . . a(5) = 8: . /\/\ /\/\ /\/\ . /\/\/\/\/\ /\/\/ \ /\/ \/\ / \/\/\ . . /\ /\ /\ /\ . /\/ \ / \/\ /\/ \ / \/\ . /\/ \ /\/ \ / \/\ / \/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(binomial(i, k)*binomial(j-1, i-1-k) *b(n-j, k, i), i=1+k..min(j+k, n-j))) end: a:= n-> 1+add(b(n, j$2), j=1..n/2): seq(a(n), n=0..33);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Binomial[i, k]*Binomial[j - 1, i - 1 - k]*b[n - j, k, i], {i, 1 + k, Min[j + k, n - j]}]]; a[n_] := 1 + Sum[b[n, j, j], {j, 1, n/2}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 24 2018, translated from Maple *)