A287989 Number of Dyck paths of semilength n such that all positive levels up to the highest level have a positive number of peaks and the number of peaks of adjacent levels is different.
1, 1, 1, 1, 6, 10, 27, 84, 226, 770, 2390, 7579, 25222, 84299, 285284, 976105, 3386494, 11858759, 41782516, 148205047, 529101609, 1899680494, 6854597493, 24847293152, 90460431604, 330654288724, 1213033321450, 4465027739962, 16486012746085, 61044028354833
Offset: 0
Keywords
Examples
. (4) = 6: . /\ /\ /\ /\/\ /\/\ . /\/\/\/\ /\/\/ \ /\/ \/\ / \/\/\ /\/ \ / \/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add( b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t), t={$max(1, i-j)..min(n-j, i-1)} minus {k}), i=1..n-j)) end: a:= n-> `if`(n=0, 1, add(b(n, k$2), k=1..n)): seq(a(n), n=0..30);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Range[Max[1, i - j], Min[n - j, i - 1]] ~Complement~ {k}}], {i, 1, n - j}]]; a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from Maple *)