A287991 Expansion of Jacobi theta constant (theta_2/2)^48.
1, 48, 1128, 17344, 196836, 1764192, 13051008, 82244736, 452197434, 2210431056, 9753024192, 39328459968, 146436844568, 507826976160, 1652238451200, 5074887938688, 14794635174459, 41126600601168, 109456398969568, 279899944411776, 689873759134308
Offset: 0
Keywords
Examples
4*1 + 2*1 + 1*1 = 1 + 6. So a(1) = (4*2*1)^3*((16-1)*(16-4)*(4-1))^2 / 3110400 = 48.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
a002129[n_]:=-Sum[(-1)^d*d, {d, Divisors[n]}]; a[n_]:=a[n]=If[n==0, 1, 48 Sum[a002129[k] a[n - k], {k, n}]/n]; Table[a[n], {n, 0, 100}] (* Indranil Ghosh, Aug 02 2017 *)
-
Python
from sympy import divisors from sympy.core.cache import cacheit def a002129(n): return -sum((-1)**d*d for d in divisors(n)) @cacheit def a(n): return 1 if n==0 else 48*sum(a002129(k)*a(n - k) for k in range(1, n + 1))//n print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 02 2017
Formula
a(0) = 1, a(n) = (48/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0.
a(n) = 1/3110400 * Sum_{a, b, c, x, y, z > 0, a*x + b*y + c*z = n + 6, x == y == z == 1 mod 2 and a > b > c} (a*b*c)^3*((a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))^2.
G.f.: exp(48*Sum_{k>=1} (x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Aug 02 2017
Comments