A288022 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 6, and p1, p2 are in different decades.
47, 157, 167, 257, 367, 557, 587, 607, 647, 677, 727, 947, 977, 1097, 1117, 1187, 1217, 1367, 1657, 1747, 1777, 1907, 1987, 2207, 2287, 2417, 2467, 2677, 2837, 2897, 2957, 3307, 3407, 3607, 3617, 3637, 3727, 3797, 4007, 4357, 4457, 4507, 4597, 4657, 4937, 4987
Offset: 1
Keywords
Examples
47 is in the sequence since pair (47,53) is the first with difference 6 spanning a multiple of 10.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
GAP
P:=Filtered([1..20000], IsPrime); P1:=List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=6),j->j[1] mod 5=2),k->k[1]); # Muniru A Asiru, Jul 08 2017
-
Maple
for n from 1 to 2000 do if [ithprime(n+1)-ithprime(n), ithprime(n) mod 5] = [6,2] then print(ithprime(n)); fi; od; # Muniru A Asiru, Jan 19 2018
-
Mathematica
a288022[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==6&]] a288022[3000] (* data *)
Comments