cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A288026 Array read by antidiagonals: T(m,n) = number of maximal matchings in the grid graph P_m X P_n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 5, 5, 2, 3, 11, 22, 11, 3, 4, 24, 75, 75, 24, 4, 5, 51, 264, 400, 264, 51, 5, 7, 109, 941, 2357, 2357, 941, 109, 7, 9, 234, 3286, 13407, 22228, 13407, 3286, 234, 9, 12, 503, 11623, 76667, 207423, 207423, 76667, 11623, 503, 12
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Examples

			Table starts:
=====================================================
m\n| 1   2    3     4       5        6          7
---|-------------------------------------------------
1  | 1   1    2     2       3        4          5 ...
2  | 1   2    5    11      24       51        109 ...
3  | 2   5   22    75     264      941       3286 ...
4  | 2  11   75   400    2357    13407      76667 ...
5  | 3  24  264  2357   22228   207423    1922112 ...
6  | 4  51  941 13407  207423  3136370   47256485 ...
7  | 5 109 3286 76667 1922112 47256485 1158560776 ...
...
		

Crossrefs

Main diagonal is A287595.
Rows 1-3 are A182097(n+2), A286945, A288028.

A288027 Number of minimal edge covers in the grid graph P_n X P_n.

Original entry on oeis.org

0, 2, 38, 1834, 419710, 356269056, 1163645044100, 15000387107144576, 749707067231291403016
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Comments

A minimal edge cover is an edge cover such that the removal of any edge in the cover destroys the covering property. Equivalently, these are the edge covers whose connected components are stars.

Examples

			In the 3 X 3 grid, the minimal edge covers up to rotation and reflection are:
.__.__.    .__.__.    .__.__.    .__.__.    .__.__.    .__.  .
.__.__.    .  .  .    .__.  .    .  .__.    .  |  .    .  |  |
.__.__.    |  |  |    .__.  |    |__.  |    |  .__|    |  .__.
The first two of these need to be counted 2 and 4 times and the rest which have no symmetry 8 times so a(3) = 38.
		

Crossrefs

Main diagonal of A288025.
Cf. A286913.

Extensions

a(1) corrected by Andrew Howroyd, Jan 29 2023

A288029 Number of minimal edge covers in the ladder graph P_2 X P_n.

Original entry on oeis.org

1, 2, 6, 17, 45, 120, 324, 873, 2349, 6322, 17018, 45809, 123305, 331904, 893400, 2404801, 6473097, 17423890, 46900574, 126244129, 339816309, 914696984, 2462126012, 6627401865, 17839239445, 48018585634, 129253524146, 347916817697, 936501444241, 2520817938240
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Crossrefs

Row 2 of A288025.

Programs

  • Mathematica
    Table[(RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, 94 #^n + 33 #^(n + 1) - 7 #^(n + 2) + 8 #^(n + 3) &] + 182 (2 Cos[n Pi/2] + Sin[n Pi/2]))/910, {n, 20}] (* Eric W. Weisstein, Aug 03 2017 *)
    LinearRecurrence[{2, 1, 2, 1, 0, -1}, {1, 2, 6, 17, 45, 120}, 20] (* Eric W. Weisstein, Aug 03 2017 *)
    CoefficientList[Series[(1 + x^2 + x^3 - x^5)/(1 - 2 x - x^2 - 2 x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 03 2017 *)
  • PARI
    Vec((1+x^2+x^3-x^5)/((1+x^2)*(1-2*x-2*x^2+x^4))+O(x^20))

Formula

a(n) = 2*a(n-1)+a(n-2)+2*a(n-3)+a(n-4)-a(n-6) for n>6.
G.f.: x*(1+x^2+x^3-x^5)/((1+x^2)*(1-2*x-2*x^2+x^4)).

A288030 Number of minimal edge covers in the grid graph P_3 X P_n.

Original entry on oeis.org

1, 6, 38, 190, 1021, 5494, 29042, 154772, 824695, 4386942, 23356322, 124344111, 661873859, 3523418150, 18756407661, 99845472493, 531509598443, 2829393615575, 15061734439895, 80178331797652, 426814323111204, 2272065745374039, 12094915689644237
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Crossrefs

Row 3 of A288025.

Formula

Empirical: a(n) = 3*a(n-1)+6*a(n-2)+35*a(n-3) -7*a(n-4)+15*a(n-5)-55*a(n-6) +31*a(n-7)+36*a(n-8)+36*a(n-9) -124*a(n-10)-8*a(n-12)+32*a(n-13) +a(n-14)+9*a(n-15)-2*a(n-16) -2*a(n-17)-a(n-18) for n>18.
Empirical g.f.: x*(1 + 3*x + 14*x^2 + 5*x^3 + 20*x^4 - 12*x^5 + 15*x^6 + 6*x^7 + 2*x^8 - 82*x^9 - 5*x^10 - 3*x^11 + 29*x^12 + 8*x^14 - 2*x^15 - 2*x^16 - x^17) / (1 - 3*x - 6*x^2 - 35*x^3 + 7*x^4 - 15*x^5 + 55*x^6 - 31*x^7 - 36*x^8 - 36*x^9 + 124*x^10 + 8*x^12 - 32*x^13 - x^14 - 9*x^15 + 2*x^16 + 2*x^17 + x^18). - Colin Barker, Jun 16 2017
Showing 1-4 of 4 results.