cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288029 Number of minimal edge covers in the ladder graph P_2 X P_n.

Original entry on oeis.org

1, 2, 6, 17, 45, 120, 324, 873, 2349, 6322, 17018, 45809, 123305, 331904, 893400, 2404801, 6473097, 17423890, 46900574, 126244129, 339816309, 914696984, 2462126012, 6627401865, 17839239445, 48018585634, 129253524146, 347916817697, 936501444241, 2520817938240
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Crossrefs

Row 2 of A288025.

Programs

  • Mathematica
    Table[(RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, 94 #^n + 33 #^(n + 1) - 7 #^(n + 2) + 8 #^(n + 3) &] + 182 (2 Cos[n Pi/2] + Sin[n Pi/2]))/910, {n, 20}] (* Eric W. Weisstein, Aug 03 2017 *)
    LinearRecurrence[{2, 1, 2, 1, 0, -1}, {1, 2, 6, 17, 45, 120}, 20] (* Eric W. Weisstein, Aug 03 2017 *)
    CoefficientList[Series[(1 + x^2 + x^3 - x^5)/(1 - 2 x - x^2 - 2 x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 03 2017 *)
  • PARI
    Vec((1+x^2+x^3-x^5)/((1+x^2)*(1-2*x-2*x^2+x^4))+O(x^20))

Formula

a(n) = 2*a(n-1)+a(n-2)+2*a(n-3)+a(n-4)-a(n-6) for n>6.
G.f.: x*(1+x^2+x^3-x^5)/((1+x^2)*(1-2*x-2*x^2+x^4)).