A288055 Decimal expansion of m(3) = Sum_{n>=0} 1/n!!!, the 3rd reciprocal multifactorial constant.
3, 2, 9, 8, 9, 1, 3, 5, 3, 8, 0, 8, 8, 4, 1, 9, 0, 0, 3, 4, 0, 1, 2, 1, 7, 8, 0, 8, 2, 6, 1, 4, 6, 9, 7, 6, 9, 0, 7, 7, 8, 0, 3, 6, 9, 5, 6, 8, 3, 2, 0, 7, 0, 9, 0, 8, 8, 5, 0, 4, 5, 1, 2, 9, 0, 4, 3, 8, 7, 3, 5, 1, 8, 4, 5, 7, 3, 1, 4, 1, 7, 5, 0, 0, 9, 7, 7, 0, 1, 2, 0, 4, 8, 1, 7, 7, 6, 9, 1, 2, 5, 7
Offset: 1
Examples
3.298913538088419003401217808261469769077803695683207090885045129...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Reciprocal Multifactorial Constant
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); (Exp(1/3)/3)*(3 + 3^(1/3)*Gamma(1/3, 1/3) + 3^(2/3)*Gamma(2/3, 1/3)); // G. C. Greubel, Mar 27 2019
-
Mathematica
p = Pochhammer; m[3] = 5/2 + Sum[1/((-3)^k*((2+3*k)*p[1/3 -k, k])) + 1/((-3)^k*((1+3*k) *p[2/3 -k, k])) +(-1)^(1-k)/(3^k*(k*p[1-k, -1 +k])), {k, 1, Infinity}] (* or *) m[3] = (Exp[1/3]/3) (3 + 3^(1/3) (Gamma[1/3] - Gamma[1/3, 1/3]) + 3^(2/3) (Gamma[2/3] - Gamma[2/3, 1/3])); RealDigits[m[3], 10, 102][[1]]
-
PARI
default(realprecision, 100); (exp(1/3)/3)*(3 + 3^(1/3)*(gamma(1/3) - incgam(1/3, 1/3)) + 3^(2/3)*(gamma(2/3) - incgam(2/3, 1/3))) \\ G. C. Greubel, Mar 27 2019
-
Sage
numerical_approx((exp(1/3)/3)*(3 + 3^(1/3)*(gamma(1/3) - gamma_inc(1/3, 1/3)) + 3^(2/3)*(gamma(2/3) - gamma_inc(2/3, 1/3))), digits=100) # G. C. Greubel, Mar 27 2019
Formula
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.