cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007661 Triple factorial numbers a(n) = n!!!, defined by a(n) = n*a(n-3), a(0) = a(1) = 1, a(2) = 2. Sometimes written n!3.

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 18, 28, 80, 162, 280, 880, 1944, 3640, 12320, 29160, 58240, 209440, 524880, 1106560, 4188800, 11022480, 24344320, 96342400, 264539520, 608608000, 2504902400, 7142567040, 17041024000, 72642169600, 214277011200, 528271744000, 2324549427200
Offset: 0

Views

Author

Keywords

Comments

The triple factorial of a positive integer n is the product of the positive integers <= n that have the same residue modulo 3 as n. - Peter Luschny, Jun 23 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, NY, 1987, p. 23.

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<3 then return Fibonacci(n+1);
        else return n*a(n-3);
        fi;
      end;
    List([0..30], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Haskell
    a007661 n k = a007661_list !! n
    a007661_list = 1 : 1 : 2 : zipWith (*) a007661_list [3..]
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    I:=[1,1,2];[n le 3 select I[n] else (n-1)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 27 2015
    
  • Maple
    A007661 := n -> mul(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A007661(n), n = 0 .. 29);  # Peter Luschny, Jun 23 2011
  • Mathematica
    multiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*multiFactorial[n - k, k]]]; Array[ multiFactorial[#, 3] &, 30, 0] (* Robert G. Wilson v, Apr 23 2011 *)
    RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-3]},a,{n,30}] (* Harvey P. Dale, May 17 2012 *)
    Table[With[{q = Quotient[n + 2, 3]}, 3^q q! Binomial[n/3, q]], {n, 0, 30}] (* Jan Mangaldan, Mar 21 2013 *)
    a[ n_] := With[{m = Mod[n, 3, 1], q = 1 + Quotient[n, 3, 1]}, If[n < 0, 0, 3^q Pochhammer[m/3, q]]]; (* Michael Somos, Feb 24 2019 *)
    Table[Times@@Range[n,1,-3],{n,0,30}] (* Harvey P. Dale, Sep 12 2020 *)
  • PARI
    A007661(n,d=3)=prod(i=0,(n-1)\d,n-d*i) \\ M. F. Hasler, Feb 16 2008
    
  • Sage
    def a(n):
        if (n<3): return fibonacci(n+1)
        else: return n*a(n-3)
    [a(n) for n in (0..30)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Product_{i=0..floor((n-1)/3)} (n-3*i). - M. F. Hasler, Feb 16 2008
a(n) ~ c * n^(n/3+1/2)/exp(n/3), where c = sqrt(2*Pi/3) if n=3*k, c = sqrt(2*Pi)*3^(1/6) / Gamma(1/3) if n=3*k+1, c = sqrt(2*Pi)*3^(-1/6) / Gamma(2/3) if n=3*k+2. - Vaclav Kotesovec, Jul 29 2013
a(3*n) = A032031(n); a(3*n+1) = A007559(n+1); a(3*n+2) = A008544(n+1). - Reinhard Zumkeller, Sep 20 2013
0 = a(n)*(a(n+1) -a(n+4)) +a(n+1)*a(n+3) for all n>=0. - Michael Somos, Feb 24 2019
Sum_{n>=0} 1/a(n) = A288055. - Amiram Eldar, Nov 10 2020

A143280 Decimal expansion of m(2) = Sum_{n>=0} 1/n!!.

Original entry on oeis.org

3, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Eric W. Weisstein, Aug 04 2008

Keywords

Comments

Also decimal expansion of Sum_{n>=1} n!!/n!. - Michel Lagneau, Dec 24 2011
Apart from the first digit, the same as A227569. - Robert G. Wilson v, Apr 09 2014

Examples

			3.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A227569.
Cf. A006882 (n!!), this sequence (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2) )); // G. C. Greubel, Mar 27 2019
    
  • Mathematica
    RealDigits[ Sqrt[E] + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[ Sum[1/n!!, {n, 0, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
    RealDigits[Total[1/Range[0,200]!!],10,120][[1]] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    default(realprecision, 100); exp(1/2)*(1 + sqrt(Pi/2)*(1-erfc(1/sqrt(2) ))) \\ G. C. Greubel, Mar 27 2019
    
  • Sage
    numerical_approx(exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=100) # G. C. Greubel, Mar 27 2019

Formula

Equals sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)).

A288091 Decimal expansion of m(4) = Sum_{n>=0} 1/n!!!!, the 4th reciprocal multifactorial constant.

Original entry on oeis.org

3, 4, 8, 5, 9, 4, 4, 9, 7, 7, 4, 5, 3, 5, 5, 7, 7, 4, 5, 2, 1, 8, 8, 0, 9, 0, 4, 4, 0, 4, 6, 4, 0, 4, 7, 9, 5, 0, 9, 2, 6, 8, 2, 3, 2, 0, 8, 8, 1, 9, 6, 9, 4, 0, 7, 6, 4, 7, 2, 4, 9, 9, 9, 8, 1, 3, 1, 6, 1, 3, 1, 7, 2, 2, 9, 0, 0, 5, 6, 6, 2, 9, 6, 4, 0, 2, 2, 1, 4, 4, 6, 9, 7, 5, 9, 8, 6, 0, 1, 8, 6, 8, 5, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.485944977453557745218809044046404795092682320881969407647249998...
		

Crossrefs

Cf. A007662 (n!!!!), A143280 (m(2)), A288055 (m(3)), this sequence (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (1/4)*Exp(1/4)*(4 + Sqrt(2)* Gamma(1/4, 1/4) + 2*Gamma(1/2, 1/4) + 2*Sqrt(2)*Gamma(3/4, 1/4)) // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[4] = (1/4)*E^(1/4)*(4 + Sqrt[2]*(Gamma[1/4] - Gamma[1/4, 1/4]) + 2*(Sqrt[Pi] - Gamma[1/2, 1/4]) + 2*Sqrt[2]*(Gamma[3/4] - Gamma[3/4, 1/4])); RealDigits[m[4], 10, 104][[1]]
  • PARI
    default(realprecision, 100); (1/4)*exp(1/4)*(4+sqrt(2)*(gamma(1/4) - incgam(1/4, 1/4))+2*(sqrt(Pi) -incgam(1/2, 1/4))+2*sqrt(2)*(gamma(3/4) - incgam(3/4, 1/4))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/4)*exp(1/4)*(4 + sqrt(2)*(gamma(1/4) - gamma_inc(1/4, 1/4)) + 2*(sqrt(pi) - gamma_inc(1/2, 1/4)) + 2*sqrt(2)*(gamma(3/4) - gamma_inc(3/4, 1/4))), digits=100) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288092 Decimal expansion of m(5) = Sum_{n>=0} 1/n!5, the 5th reciprocal multifactorial constant.

Original entry on oeis.org

3, 6, 4, 0, 2, 2, 4, 4, 6, 7, 7, 3, 3, 8, 0, 9, 7, 3, 4, 1, 7, 6, 9, 3, 7, 2, 3, 6, 9, 6, 3, 5, 6, 9, 0, 6, 0, 6, 3, 2, 4, 0, 9, 5, 1, 6, 9, 6, 8, 8, 4, 2, 5, 9, 9, 4, 5, 2, 9, 5, 5, 7, 6, 3, 0, 8, 3, 6, 6, 6, 5, 7, 3, 1, 3, 2, 8, 1, 4, 8, 5, 2, 5, 9, 0, 0, 6, 4, 4, 4, 1, 3, 9, 8, 6, 9, 1, 0, 1, 3, 5, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.640224467733809734176937236963569060632409516968842599452955763...
		

Crossrefs

Cf. A085157 (n!5), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), this sequence (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/5)*Exp(1/5)*(5 + (&+[5^(k/5)*Gamma(k/5, 1/5): k in [1..4]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[5] = (1/5)*E^(1/5)*(5 + 5^(1/5)*(Gamma[1/5] - Gamma[1/5, 1/5]) + 5^(2/5)*(Gamma[2/5] - Gamma[2/5, 1/5]) + 5^(3/5)*(Gamma[3/5] - Gamma[3/5, 1/5]) + 5^(4/5)*(Gamma[4/5] - Gamma[4/5, 1/5])); RealDigits[m[5], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/5)*exp(1/5)*(5 + sum(k=1,4, 5^(k/5)*(gamma(k/5) - incgam(k/5, 1/5)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/5)*exp(1/5)*(5 + sum(5^(k/5)*(gamma(k/5) - gamma_inc(k/5, 1/5)) for k in (1..4))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288093 Decimal expansion of m(6) = Sum_{n>=0} 1/n!6, the 6th reciprocal multifactorial constant.

Original entry on oeis.org

3, 7, 7, 1, 9, 0, 2, 3, 9, 6, 2, 1, 1, 7, 5, 8, 4, 3, 5, 6, 6, 0, 0, 5, 3, 5, 8, 9, 2, 6, 3, 9, 4, 3, 6, 3, 2, 6, 4, 6, 8, 9, 0, 2, 8, 1, 5, 7, 4, 4, 7, 8, 3, 6, 9, 5, 6, 7, 7, 5, 6, 4, 8, 5, 2, 5, 9, 6, 4, 3, 2, 9, 4, 5, 7, 4, 3, 8, 3, 8, 7, 0, 9, 3, 5, 2, 0, 3, 5, 8, 1, 0, 5, 1, 5, 3, 5, 6, 2, 2, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.771902396211758435660053589263943632646890281574478369567756485...
		

Crossrefs

Cf. A085158 (n!6), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), this sequence (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/6)*Exp(1/6)*(6 + (&+[6^(k/6)*Gamma(k/6, 1/6): k in [1..5]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[6], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/6)*exp(1/6)*(6 + sum(k=1,5, 6^(k/6)*(gamma(k/6) - incgam(k/6, 1/6)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/6)*exp(1/6)*(6 + sum(6^(k/6)*(gamma(k/6) - gamma_inc(k/6, 1/6)) for k in (1..5))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288094 Decimal expansion of m(7) = Sum_{n>=0} 1/n!7, the 7th reciprocal multifactorial constant.

Original entry on oeis.org

3, 8, 8, 6, 9, 5, 9, 6, 5, 3, 7, 4, 0, 8, 4, 3, 4, 9, 5, 4, 2, 8, 5, 6, 9, 9, 1, 0, 9, 3, 6, 7, 0, 5, 6, 7, 2, 7, 0, 5, 3, 0, 9, 5, 8, 7, 5, 2, 0, 1, 6, 0, 4, 8, 5, 8, 0, 4, 3, 9, 5, 3, 3, 8, 6, 9, 1, 7, 0, 3, 7, 6, 2, 2, 7, 6, 7, 8, 4, 7, 3, 1, 7, 5, 6, 7, 6, 4, 0, 6, 0, 6, 4, 5, 8, 3, 0, 0, 1, 7, 4, 4, 7, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.88695965374084349542856991093670567270530958752016048580439533869...
		

Crossrefs

Cf. A114799 (n!7), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), this sequence (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/7)*Exp(1/7)*(7 + (&+[7^(k/7)*Gamma(k/7, 1/7): k in [1..6]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[7], 10, 104][[1]]
    RealDigits[Total[Table[1/Times@@Range[n,1,-7],{n,0,500}]],10,120][[1]] (* Harvey P. Dale, May 21 2023 *)
  • PARI
    default(realprecision, 105); (1/7)*exp(1/7)*(7 + sum(k=1,6, 7^(k/7)*(gamma(k/7) - incgam(k/7, 1/7)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/7)*exp(1/7)*(7 + sum(7^(k/7)*(gamma(k/7) - gamma_inc(k/7, 1/7)) for k in (1..6))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288095 Decimal expansion of m(8) = Sum_{n>=0} 1/n!8, the 8th reciprocal multifactorial constant.

Original entry on oeis.org

3, 9, 8, 9, 2, 4, 1, 2, 1, 2, 6, 9, 0, 1, 3, 6, 5, 4, 4, 1, 3, 3, 6, 4, 2, 1, 3, 4, 8, 0, 1, 9, 0, 9, 9, 4, 3, 8, 3, 5, 9, 2, 7, 3, 9, 2, 4, 5, 7, 6, 8, 1, 4, 8, 2, 6, 2, 0, 9, 5, 5, 6, 6, 5, 3, 0, 4, 1, 6, 4, 8, 8, 7, 6, 0, 5, 1, 5, 5, 1, 0, 8, 3, 8, 6, 2, 6, 1, 2, 0, 8, 0, 8, 0, 0, 6, 8, 4, 2, 3, 0, 7, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.9892412126901365441336421348019099438359273924576814826209556653...
		

Crossrefs

Cf. A114800 (n!8), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), this sequence (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(107)); (1/8)*Exp(1/8)*(8 + (&+[8^(k/8)*Gamma(k/8, 1/8): k in [1..7]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[8], 10, 103][[1]]
  • PARI
    default(realprecision, 105); (1/8)*exp(1/8)*(8 + sum(k=1,7, 8^(k/8)*(gamma(k/8) - incgam(k/8, 1/8)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/8)*exp(1/8)*(8 + sum(8^(k/8)*(gamma(k/8) - gamma_inc(k/8, 1/8)) for k in (1..7))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288096 Decimal expansion of m(9) = Sum_{n>=0} 1/n!9, the 9th reciprocal multifactorial constant.

Original entry on oeis.org

4, 0, 8, 1, 3, 7, 5, 5, 2, 0, 1, 6, 8, 8, 9, 8, 5, 4, 4, 0, 7, 1, 1, 0, 5, 1, 4, 6, 6, 0, 9, 6, 1, 0, 6, 9, 4, 6, 2, 6, 4, 1, 0, 0, 7, 7, 3, 1, 8, 6, 0, 7, 5, 8, 8, 4, 3, 4, 8, 5, 1, 7, 5, 1, 6, 7, 4, 9, 3, 4, 8, 7, 6, 3, 9, 0, 3, 3, 3, 5, 9, 9, 2, 1, 0, 5, 4, 2, 4, 2, 3, 0, 5, 7, 2, 0, 3, 5, 9, 0, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			4.08137552016889854407110514660961069462641007731860758843485175...
		

Crossrefs

Cf. A114806 (n!9), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), this sequence (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/9)*Exp(1/9)*(9 + (&+[9^(k/9)*Gamma(k/9, 1/9): k in [1..8]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[9], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/9)*exp(1/9)*(9 + sum(k=1,8, 9^(k/9)*(gamma(k/9) - incgam(k/9, 1/9)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/9)*exp(1/9)*(9 + sum(9^(k/9)*(gamma(k/9) - gamma_inc(k/9, 1/9)) for k in (1..8))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A342033 Decimal expansion of m(10) = Sum_{n>=0} 1/n!10, the 10th reciprocal multifactorial constant.

Original entry on oeis.org

4, 1, 6, 5, 2, 4, 3, 7, 6, 5, 5, 5, 8, 3, 8, 4, 5, 9, 0, 7, 8, 7, 2, 6, 2, 4, 1, 0, 4, 4, 5, 5, 6, 0, 7, 3, 8, 2, 2, 8, 0, 3, 0, 7, 9, 5, 3, 7, 0, 7, 7, 2, 7, 7, 6, 7, 9, 4, 4, 2, 1, 9, 1, 1, 5, 0, 7, 0, 5, 8, 4, 7, 7, 3, 0, 9, 8, 7, 2, 5, 6, 8, 6, 2, 3, 2, 0, 1, 2, 7, 4, 8, 4, 2, 8, 6, 9, 3, 3, 8, 4, 1, 3, 8
Offset: 1

Views

Author

Bhoris Dhanjal, Feb 26 2021

Keywords

Comments

m(k) can be proved to approach a harmonic series (and diverge) as k approaches infinity.

Examples

			4.165243765558384590787262...
For n=10, the series is equal to 1+summation from n=1 to 10 (1/n)=9901/2520.
		

Crossrefs

Cf. A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Mathematica
    Multifactorial[n_, k_] := Abs[Apply[Times, Range[-n, -1, k]]]
    N[Sum[1/Multifactorial[n, 10], {n, 0, 10000}], 105]
    (* or *)
    ReciprocalFactorialSumConstant[k_] :=
    1/k Exp[1/k] (k + Sum[k^(j/k) Gamma[j/k, 0, 1/k], {j, k - 1}])
    N[ReciprocalFactorialSumConstant[10], 105]

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (k^(j/k)*Gamma(j/k, 1/k))) where Gamma(a,x) the incomplete Gamma function.
Showing 1-9 of 9 results.