cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A006882 Double factorials n!!: a(n) = n*a(n-2) for n > 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10395, 46080, 135135, 645120, 2027025, 10321920, 34459425, 185794560, 654729075, 3715891200, 13749310575, 81749606400, 316234143225, 1961990553600, 7905853580625, 51011754393600, 213458046676875, 1428329123020800
Offset: 0

Views

Author

Keywords

Comments

Product of pairs of successive terms gives factorials in increasing order. - Amarnath Murthy, Oct 17 2002
a(n) = number of down-up permutations on [n+1] for which the entries in the even positions are increasing. For example, a(3)=3 counts 2143, 3142, 4132. Also, a(n) = number of down-up permutations on [n+2] for which the entries in the odd positions are decreasing. For example, a(3)=3 counts 51423, 52413, 53412. - David Callan, Nov 29 2007
The double factorial of a positive integer n is the product of the positive integers <= n that have the same parity as n. - Peter Luschny, Jun 23 2011
For n even, a(n) is the number of ways to place n points on an n X n grid with pairwise distinct abscissa, pairwise distinct ordinate, and 180-degree rotational symmetry. For n odd, the number of ways is a(n-1) because the center point can be considered "fixed". For 90-degree rotational symmetry cf. A001813, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017
Could be extended to include a(-1) = 1. But a(-2) is not defined, otherwise we would have 1 = a(0) = 0*a(-2). - Jianing Song, Oct 23 2019

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 48*x^6 + 105*x^7 + 384*x^8 + ...
		

References

  • Putnam Contest, 4 Dec. 2004, Problem A3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A000165 and A001147. These two entries have more information.
A diagonal of A202212.

Programs

  • Haskell
    a006882 n = a006882_list !! n
    a006882_list = 1 : 1 : zipWith (*) [2..] a006882_list
    -- Reinhard Zumkeller, Oct 23 2014
    
  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [ DoubleFactorial(n): n in [0..28] ]; // Klaus Brockhaus, Jan 23 2011
    
  • Maple
    A006882 := proc(n) option remember; if n <= 1 then 1 else n*A006882(n-2); fi; end;
    A006882 := proc(n) doublefactorial(n) ; end proc; seq(A006882(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
    A006882 := n -> mul(k, k = select(k -> k mod 2 = n mod 2, [$1 .. n])):  seq(A006882(n), n = 0 .. 10); # Peter Luschny, Jun 23 2011
    A006882 := proc(n) if n=0 then 1 else mul(n-2*k, k=0..floor(n/2)-1); fi; end; # N. J. A. Sloane, May 27 2016
  • Mathematica
    Array[ #!!&, 40, 0 ]
    multiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*multiFactorial[n - k, k]]]; Array[ multiFactorial[#, 2] &, 27, 0] (* Robert G. Wilson v, Apr 23 2011 *)
  • PARI
    {a(n) = prod(i=0, (n-1)\2, n - 2*i )} \\ Improved by M. F. Hasler, Nov 30 2013
    
  • PARI
    {a(n) = if( n<2, n>=0, n * a(n-2))}; /* Michael Somos, Apr 06 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, my(E); E = exp(x^2 / 2 + x * O(x^n)); n! * polcoeff( 1 + E * x * (1 + intformal(1 / E)), n))}; /* Michael Somos, Apr 06 2003 */
    
  • Python
    from sympy import factorial2
    def A006882(n): return factorial2(n) # Chai Wah Wu, Apr 03 2021

Formula

a(n) = Product_{i=0..floor((n-1)/2)} (n - 2*i).
E.g.f.: 1+exp(x^2/2)*x*(1+sqrt(Pi/2)*erf(x/sqrt(2))). - Wouter Meeussen, Mar 08 2001
Satisfies a(n+3)*a(n) - a(n+1)*a(n+2) = (n+1)!. [Putnam Contest]
a(n) = n!/a(n-1). - Vaclav Kotesovec, Sep 17 2012
a(n) * a(n+3) = a(n+1) * (a(n+2) + a(n)). a(n) * a(n+1) = (n+1)!. - Michael Somos, Dec 29 2012
a(n) ~ c * n^((n+1)/2) / exp(n/2), where c = sqrt(Pi) if n is even, and c = sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 08 2014
a(2*n) = 2^n*a(n)*a(n-1). a(2^n) = 2^(2^n - 1) * 1!! * 3!! * 7!! * ... * (2^(n-1) - 1)!!. - Peter Bala, Nov 01 2016
a(n) = 2^h*(2/Pi)^(sin(Pi*h)^2/2)*Gamma(h+1) where h = n/2. This analytical extension supports the view that a(-1) = 1 is a meaningful numerical extension. With this definition (-1/2)!! = Gamma(3/4)/Pi^(1/4). - Peter Luschny, Oct 24 2019
a(n) ~ (n+1/6)*sqrt((2/e)*(n/e)^(n-1)*(Pi/2)^(cos(n*Pi/2)^2)). - Peter Luschny, Oct 25 2019
Sum_{n>=0} 1/a(n) = A143280. - Amiram Eldar, Nov 10 2020
Sum_{n>=0} 1/(a(n)*a(n+1)) = e - 1. - Andrés Ventas, Apr 12 2021

A288055 Decimal expansion of m(3) = Sum_{n>=0} 1/n!!!, the 3rd reciprocal multifactorial constant.

Original entry on oeis.org

3, 2, 9, 8, 9, 1, 3, 5, 3, 8, 0, 8, 8, 4, 1, 9, 0, 0, 3, 4, 0, 1, 2, 1, 7, 8, 0, 8, 2, 6, 1, 4, 6, 9, 7, 6, 9, 0, 7, 7, 8, 0, 3, 6, 9, 5, 6, 8, 3, 2, 0, 7, 0, 9, 0, 8, 8, 5, 0, 4, 5, 1, 2, 9, 0, 4, 3, 8, 7, 3, 5, 1, 8, 4, 5, 7, 3, 1, 4, 1, 7, 5, 0, 0, 9, 7, 7, 0, 1, 2, 0, 4, 8, 1, 7, 7, 6, 9, 1, 2, 5, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.298913538088419003401217808261469769077803695683207090885045129...
		

Crossrefs

Cf. A007661 (n!!!), A143280 (m(2)), this sequence (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Exp(1/3)/3)*(3 + 3^(1/3)*Gamma(1/3, 1/3) + 3^(2/3)*Gamma(2/3, 1/3)); // G. C. Greubel, Mar 27 2019
    
  • Mathematica
    p = Pochhammer;
    m[3] = 5/2 + Sum[1/((-3)^k*((2+3*k)*p[1/3 -k, k])) + 1/((-3)^k*((1+3*k) *p[2/3 -k, k])) +(-1)^(1-k)/(3^k*(k*p[1-k, -1 +k])), {k, 1, Infinity}]
    (* or *)
    m[3] = (Exp[1/3]/3) (3 + 3^(1/3) (Gamma[1/3] - Gamma[1/3, 1/3]) + 3^(2/3) (Gamma[2/3] - Gamma[2/3, 1/3]));
    RealDigits[m[3], 10, 102][[1]]
  • PARI
    default(realprecision, 100); (exp(1/3)/3)*(3 + 3^(1/3)*(gamma(1/3) - incgam(1/3, 1/3)) + 3^(2/3)*(gamma(2/3) - incgam(2/3, 1/3))) \\ G. C. Greubel, Mar 27 2019
    
  • Sage
    numerical_approx((exp(1/3)/3)*(3 + 3^(1/3)*(gamma(1/3) - gamma_inc(1/3, 1/3)) + 3^(2/3)*(gamma(2/3) - gamma_inc(2/3, 1/3))), digits=100) # G. C. Greubel, Mar 27 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288091 Decimal expansion of m(4) = Sum_{n>=0} 1/n!!!!, the 4th reciprocal multifactorial constant.

Original entry on oeis.org

3, 4, 8, 5, 9, 4, 4, 9, 7, 7, 4, 5, 3, 5, 5, 7, 7, 4, 5, 2, 1, 8, 8, 0, 9, 0, 4, 4, 0, 4, 6, 4, 0, 4, 7, 9, 5, 0, 9, 2, 6, 8, 2, 3, 2, 0, 8, 8, 1, 9, 6, 9, 4, 0, 7, 6, 4, 7, 2, 4, 9, 9, 9, 8, 1, 3, 1, 6, 1, 3, 1, 7, 2, 2, 9, 0, 0, 5, 6, 6, 2, 9, 6, 4, 0, 2, 2, 1, 4, 4, 6, 9, 7, 5, 9, 8, 6, 0, 1, 8, 6, 8, 5, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.485944977453557745218809044046404795092682320881969407647249998...
		

Crossrefs

Cf. A007662 (n!!!!), A143280 (m(2)), A288055 (m(3)), this sequence (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (1/4)*Exp(1/4)*(4 + Sqrt(2)* Gamma(1/4, 1/4) + 2*Gamma(1/2, 1/4) + 2*Sqrt(2)*Gamma(3/4, 1/4)) // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[4] = (1/4)*E^(1/4)*(4 + Sqrt[2]*(Gamma[1/4] - Gamma[1/4, 1/4]) + 2*(Sqrt[Pi] - Gamma[1/2, 1/4]) + 2*Sqrt[2]*(Gamma[3/4] - Gamma[3/4, 1/4])); RealDigits[m[4], 10, 104][[1]]
  • PARI
    default(realprecision, 100); (1/4)*exp(1/4)*(4+sqrt(2)*(gamma(1/4) - incgam(1/4, 1/4))+2*(sqrt(Pi) -incgam(1/2, 1/4))+2*sqrt(2)*(gamma(3/4) - incgam(3/4, 1/4))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/4)*exp(1/4)*(4 + sqrt(2)*(gamma(1/4) - gamma_inc(1/4, 1/4)) + 2*(sqrt(pi) - gamma_inc(1/2, 1/4)) + 2*sqrt(2)*(gamma(3/4) - gamma_inc(3/4, 1/4))), digits=100) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288092 Decimal expansion of m(5) = Sum_{n>=0} 1/n!5, the 5th reciprocal multifactorial constant.

Original entry on oeis.org

3, 6, 4, 0, 2, 2, 4, 4, 6, 7, 7, 3, 3, 8, 0, 9, 7, 3, 4, 1, 7, 6, 9, 3, 7, 2, 3, 6, 9, 6, 3, 5, 6, 9, 0, 6, 0, 6, 3, 2, 4, 0, 9, 5, 1, 6, 9, 6, 8, 8, 4, 2, 5, 9, 9, 4, 5, 2, 9, 5, 5, 7, 6, 3, 0, 8, 3, 6, 6, 6, 5, 7, 3, 1, 3, 2, 8, 1, 4, 8, 5, 2, 5, 9, 0, 0, 6, 4, 4, 4, 1, 3, 9, 8, 6, 9, 1, 0, 1, 3, 5, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.640224467733809734176937236963569060632409516968842599452955763...
		

Crossrefs

Cf. A085157 (n!5), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), this sequence (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/5)*Exp(1/5)*(5 + (&+[5^(k/5)*Gamma(k/5, 1/5): k in [1..4]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[5] = (1/5)*E^(1/5)*(5 + 5^(1/5)*(Gamma[1/5] - Gamma[1/5, 1/5]) + 5^(2/5)*(Gamma[2/5] - Gamma[2/5, 1/5]) + 5^(3/5)*(Gamma[3/5] - Gamma[3/5, 1/5]) + 5^(4/5)*(Gamma[4/5] - Gamma[4/5, 1/5])); RealDigits[m[5], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/5)*exp(1/5)*(5 + sum(k=1,4, 5^(k/5)*(gamma(k/5) - incgam(k/5, 1/5)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/5)*exp(1/5)*(5 + sum(5^(k/5)*(gamma(k/5) - gamma_inc(k/5, 1/5)) for k in (1..4))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288093 Decimal expansion of m(6) = Sum_{n>=0} 1/n!6, the 6th reciprocal multifactorial constant.

Original entry on oeis.org

3, 7, 7, 1, 9, 0, 2, 3, 9, 6, 2, 1, 1, 7, 5, 8, 4, 3, 5, 6, 6, 0, 0, 5, 3, 5, 8, 9, 2, 6, 3, 9, 4, 3, 6, 3, 2, 6, 4, 6, 8, 9, 0, 2, 8, 1, 5, 7, 4, 4, 7, 8, 3, 6, 9, 5, 6, 7, 7, 5, 6, 4, 8, 5, 2, 5, 9, 6, 4, 3, 2, 9, 4, 5, 7, 4, 3, 8, 3, 8, 7, 0, 9, 3, 5, 2, 0, 3, 5, 8, 1, 0, 5, 1, 5, 3, 5, 6, 2, 2, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.771902396211758435660053589263943632646890281574478369567756485...
		

Crossrefs

Cf. A085158 (n!6), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), this sequence (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/6)*Exp(1/6)*(6 + (&+[6^(k/6)*Gamma(k/6, 1/6): k in [1..5]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[6], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/6)*exp(1/6)*(6 + sum(k=1,5, 6^(k/6)*(gamma(k/6) - incgam(k/6, 1/6)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/6)*exp(1/6)*(6 + sum(6^(k/6)*(gamma(k/6) - gamma_inc(k/6, 1/6)) for k in (1..5))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288094 Decimal expansion of m(7) = Sum_{n>=0} 1/n!7, the 7th reciprocal multifactorial constant.

Original entry on oeis.org

3, 8, 8, 6, 9, 5, 9, 6, 5, 3, 7, 4, 0, 8, 4, 3, 4, 9, 5, 4, 2, 8, 5, 6, 9, 9, 1, 0, 9, 3, 6, 7, 0, 5, 6, 7, 2, 7, 0, 5, 3, 0, 9, 5, 8, 7, 5, 2, 0, 1, 6, 0, 4, 8, 5, 8, 0, 4, 3, 9, 5, 3, 3, 8, 6, 9, 1, 7, 0, 3, 7, 6, 2, 2, 7, 6, 7, 8, 4, 7, 3, 1, 7, 5, 6, 7, 6, 4, 0, 6, 0, 6, 4, 5, 8, 3, 0, 0, 1, 7, 4, 4, 7, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.88695965374084349542856991093670567270530958752016048580439533869...
		

Crossrefs

Cf. A114799 (n!7), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), this sequence (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/7)*Exp(1/7)*(7 + (&+[7^(k/7)*Gamma(k/7, 1/7): k in [1..6]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[7], 10, 104][[1]]
    RealDigits[Total[Table[1/Times@@Range[n,1,-7],{n,0,500}]],10,120][[1]] (* Harvey P. Dale, May 21 2023 *)
  • PARI
    default(realprecision, 105); (1/7)*exp(1/7)*(7 + sum(k=1,6, 7^(k/7)*(gamma(k/7) - incgam(k/7, 1/7)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/7)*exp(1/7)*(7 + sum(7^(k/7)*(gamma(k/7) - gamma_inc(k/7, 1/7)) for k in (1..6))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288095 Decimal expansion of m(8) = Sum_{n>=0} 1/n!8, the 8th reciprocal multifactorial constant.

Original entry on oeis.org

3, 9, 8, 9, 2, 4, 1, 2, 1, 2, 6, 9, 0, 1, 3, 6, 5, 4, 4, 1, 3, 3, 6, 4, 2, 1, 3, 4, 8, 0, 1, 9, 0, 9, 9, 4, 3, 8, 3, 5, 9, 2, 7, 3, 9, 2, 4, 5, 7, 6, 8, 1, 4, 8, 2, 6, 2, 0, 9, 5, 5, 6, 6, 5, 3, 0, 4, 1, 6, 4, 8, 8, 7, 6, 0, 5, 1, 5, 5, 1, 0, 8, 3, 8, 6, 2, 6, 1, 2, 0, 8, 0, 8, 0, 0, 6, 8, 4, 2, 3, 0, 7, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.9892412126901365441336421348019099438359273924576814826209556653...
		

Crossrefs

Cf. A114800 (n!8), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), this sequence (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(107)); (1/8)*Exp(1/8)*(8 + (&+[8^(k/8)*Gamma(k/8, 1/8): k in [1..7]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[8], 10, 103][[1]]
  • PARI
    default(realprecision, 105); (1/8)*exp(1/8)*(8 + sum(k=1,7, 8^(k/8)*(gamma(k/8) - incgam(k/8, 1/8)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/8)*exp(1/8)*(8 + sum(8^(k/8)*(gamma(k/8) - gamma_inc(k/8, 1/8)) for k in (1..7))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288096 Decimal expansion of m(9) = Sum_{n>=0} 1/n!9, the 9th reciprocal multifactorial constant.

Original entry on oeis.org

4, 0, 8, 1, 3, 7, 5, 5, 2, 0, 1, 6, 8, 8, 9, 8, 5, 4, 4, 0, 7, 1, 1, 0, 5, 1, 4, 6, 6, 0, 9, 6, 1, 0, 6, 9, 4, 6, 2, 6, 4, 1, 0, 0, 7, 7, 3, 1, 8, 6, 0, 7, 5, 8, 8, 4, 3, 4, 8, 5, 1, 7, 5, 1, 6, 7, 4, 9, 3, 4, 8, 7, 6, 3, 9, 0, 3, 3, 3, 5, 9, 9, 2, 1, 0, 5, 4, 2, 4, 2, 3, 0, 5, 7, 2, 0, 3, 5, 9, 0, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			4.08137552016889854407110514660961069462641007731860758843485175...
		

Crossrefs

Cf. A114806 (n!9), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), this sequence (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/9)*Exp(1/9)*(9 + (&+[9^(k/9)*Gamma(k/9, 1/9): k in [1..8]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[9], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/9)*exp(1/9)*(9 + sum(k=1,8, 9^(k/9)*(gamma(k/9) - incgam(k/9, 1/9)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/9)*exp(1/9)*(9 + sum(9^(k/9)*(gamma(k/9) - gamma_inc(k/9, 1/9)) for k in (1..8))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A143382 Numerator of Sum_{k=0..n} 1/k!!.

Original entry on oeis.org

1, 2, 5, 17, 71, 121, 731, 1711, 41099, 370019, 740101, 2713789, 1206137, 423355111, 846710651, 1814380259, 203210595443, 12654139763, 531473870981, 43758015399281, 525096184837561, 441080795274037, 22054039763790029
Offset: 0

Views

Author

Jonathan Vos Post, Aug 11 2008

Keywords

Comments

Denominators are A143383. A143382(n)/A143383(n) is to A007676(n)/A007676(n) as double factorials are to factorials. A143382/A143383 fractions begin:
n numerator/denominator
0 1/0!! = 1/1
1 1/0!! + 1/1!! = 2/1
2 1/0!! + 1/1!! + 1/2!! = 5/2
3 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6
4 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! = 71/24
5 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! = 121/40
6 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! + 1/6!! = 731/240
The series converges to sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) = 3.0594074053425761445... whose decimal expansion is given by A143280. The analogs of A094007 and A094008 are determined by 2 being the only prime denominator in the convergents to the sum of reciprocals of double factorials and prime numerators beginning: a(1) = 2, a(2) = 5, a(3) = 17, a(4) = 71, a(15) = 1814380259, a(19) = 43758015399281, a(21) = 441080795274037, a(23) = 867081905243923.

Examples

			a(3) = 17 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 1814380259 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
		

Crossrefs

Cf. A006882 (n!!), A094007, A143280 (m(2)), A143383 (denominators).

Programs

  • Magma
    [n le 0 select 1 else Numerator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    Table[Numerator[Sum[1/k!!, {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Mar 28 2019 *)
    Accumulate[1/Range[0,30]!!]//Numerator (* Harvey P. Dale, May 19 2023 *)
  • PARI
    vector(25, n, n--; numerator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    [numerator(sum( 1/product((k - 2*j) for j in (0..floor((k-1)/2)))   for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019

Formula

Numerators of Sum_{k=0..n} 1/k!! = Sum_{k=0..n} 1/A006882(k).

A143383 Denominator of Sum_{k=0..n} 1/k!!.

Original entry on oeis.org

1, 1, 2, 6, 24, 40, 240, 560, 13440, 120960, 241920, 887040, 394240, 138378240, 276756480, 593049600, 66421555200, 4136140800, 173717913600, 14302774886400, 171633298636800, 144171970854912, 7208598542745600, 283414985441280
Offset: 0

Views

Author

Jonathan Vos Post, Aug 11 2008

Keywords

Comments

Numerators are A143382. A143382(n)/A143383(n) is to A007676(n)/A007676(n) as double factorials are to factorials. A143382/A143383 fractions begin:
n numerator/denominator
0 1/0!! = 1/1
1 1/0!! + 1/1!! = 2/1
2 1/0!! + 1/1!! + 1/2!! = 5/2
3 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6
4 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! = 71/24
5 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! = 121/40
6 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! + 1/6!! = 731/240
The series converges to sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) = 3.0594074053425761445... whose decimal expansion is given by A143280. The analogs of A094007 and A094008 are determined by 2 being the only prime denominator in the convergents to the sum of reciprocals of double factorials and prime numerators beginning: a(1) = 2, a(2) = 5, a(3) = 17, a(4) = 71, a(15) = 1814380259, a(19) = 43758015399281, a(21) = 441080795274037, a(23) = 867081905243923.

Examples

			a(3) = 6 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 593049600 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
		

Crossrefs

Cf. A006882 (n!!), A094007, A143280 (m(2)), A143382 (numerator).

Programs

  • Magma
    [n le 0 select 1 else Denominator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    Table[Denominator[Sum[1/k!!, {k,0,n}]], {n,0,25}] (* G. C. Greubel, Mar 28 2019 *)
  • PARI
    vector(25, n, n--; denominator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    [denominator(sum(1/product((k-2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019

Formula

Denominators of Sum_{k=0..n} 1/k!! = Sum_{k=0..n} 1/A006882(k).
Showing 1-10 of 16 results. Next