A288109 Number of Dyck paths of semilength n such that all levels with peaks have exactly the same number of peaks.
1, 1, 2, 5, 9, 23, 56, 122, 323, 792, 2060, 5199, 13314, 35171, 94077, 249285, 662901, 1775244, 4806724, 13125887, 36107283, 99863241, 276784435, 768288783, 2143763275, 6037486060, 17171063218, 49187617277, 141512589597, 408293870713, 1181084207303
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> 1 + add(b(n, j$2), j=1..n-1): seq(a(n), n=0..33);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n==j, 1, Sum[b[n-j, k, i]*(Binomial[j-1, i - 1] + Binomial[i, k]*Binomial[j-1, i-1-k]), {i, 1, Min[j+k, n-j]}]]; a[n_] := 1 + Sum[b[n, j, j], {j, 1, n - 1}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 31 2018, from Maple *)