cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288109 Number of Dyck paths of semilength n such that all levels with peaks have exactly the same number of peaks.

Original entry on oeis.org

1, 1, 2, 5, 9, 23, 56, 122, 323, 792, 2060, 5199, 13314, 35171, 94077, 249285, 662901, 1775244, 4806724, 13125887, 36107283, 99863241, 276784435, 768288783, 2143763275, 6037486060, 17171063218, 49187617277, 141512589597, 408293870713, 1181084207303
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2017

Keywords

Crossrefs

Row sums of A288108.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1, add(
          b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)
           *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
        end:
    a:= n-> 1 + add(b(n, j$2), j=1..n-1):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n==j, 1, Sum[b[n-j, k, i]*(Binomial[j-1, i - 1] + Binomial[i, k]*Binomial[j-1, i-1-k]), {i, 1, Min[j+k, n-j]}]];
    a[n_] := 1 + Sum[b[n, j, j], {j, 1, n - 1}];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 31 2018, from Maple *)