cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A288108 Number T(n,k) of Dyck paths of semilength n such that each level has exactly k peaks or no peaks; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 2, 1, 1, 0, 13, 5, 3, 1, 1, 0, 31, 15, 4, 4, 1, 1, 0, 71, 27, 10, 7, 5, 1, 1, 0, 181, 76, 36, 11, 11, 6, 1, 1, 0, 447, 196, 83, 22, 19, 16, 7, 1, 1, 0, 1111, 548, 225, 81, 32, 31, 22, 8, 1, 1, 0, 2799, 1388, 573, 235, 60, 56, 48, 29, 9, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(0,k) = 1 and T(n,k) = 0 if k > n > 0.

Examples

			. T(5,2) = 5:                                        /\/\
.                                       /\  /\      /    \
.      /\/\      /\/\      /\/\        /  \/  \    /      \
. /\/\/    \  /\/    \/\  /    \/\/\  /        \  /        \ .
.
. T(5,3) = 3:
.                                       /\/\/\
.              /\  /\/\    /\/\  /\    /      \
.             /  \/    \  /    \/  \  /        \ .
.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,  1;
  0,   3,  1,  1;
  0,   5,  2,  1,  1;
  0,  13,  5,  3,  1,  1;
  0,  31, 15,  4,  4,  1, 1;
  0,  71, 27, 10,  7,  5, 1, 1;
  0, 181, 76, 36, 11, 11, 6, 1, 1;
		

Crossrefs

Row sums give A288109.
T(2n,n) gives A156043.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1, add(
          b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)
           *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
        end:
    T:= (n, k)-> b(n, k$2):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
    T[n_, k_] := b[n, k, k];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)

A287987 Number of Dyck paths of semilength n such that all positive levels have the same number of peaks.

Original entry on oeis.org

1, 1, 1, 3, 1, 8, 13, 13, 54, 132, 280, 547, 1219, 3904, 11107, 25082, 53777, 137751, 419831, 1257599, 3453557, 8911341, 22636845, 59890162, 172264224, 529706648, 1630328686, 4765347773, 13125989799, 35253234315, 97531470556, 287880507391, 894915519516
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2017

Keywords

Examples

			. a(3) = 3:                         /\        /\
.                    /\/\/\      /\/  \      /  \/\  .
.
. a(5) = 8:
.                       /\/\      /\/\      /\/\
.      /\/\/\/\/\  /\/\/    \  /\/    \/\  /    \/\/\
.
.            /\        /\          /\        /\
.         /\/  \      /  \/\    /\/  \      /  \/\
.      /\/      \  /\/      \  /      \/\  /      \/\  .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1,
           add(binomial(i, k)*binomial(j-1, i-1-k)
             *b(n-j, k, i), i=1+k..min(j+k, n-j)))
        end:
    a:= n-> 1+add(b(n, j$2), j=1..n/2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Binomial[i, k]*Binomial[j - 1, i - 1 - k]*b[n - j, k, i], {i, 1 + k, Min[j + k, n - j]}]];
    a[n_] := 1 + Sum[b[n, j, j], {j, 1, n/2}];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 24 2018, translated from Maple *)
Showing 1-2 of 2 results.